Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcop | Structured version Visualization version GIF version |
Description: The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of each of its components. (Contributed by AV, 8-Apr-2023.) |
Ref | Expression |
---|---|
sbcop.z | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcop | ⊢ ([𝑏 / 𝑦][𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑏〉 / 𝑧]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcop.z | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
2 | 1 | sbcop1 5402 | . . 3 ⊢ ([𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑦〉 / 𝑧]𝜑) |
3 | 2 | sbcbii 3776 | . 2 ⊢ ([𝑏 / 𝑦][𝑎 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][〈𝑎, 𝑦〉 / 𝑧]𝜑) |
4 | sbcnestgw 4354 | . . 3 ⊢ (𝑏 ∈ V → ([𝑏 / 𝑦][〈𝑎, 𝑦〉 / 𝑧]𝜑 ↔ [⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 / 𝑧]𝜑)) | |
5 | 4 | elv 3438 | . 2 ⊢ ([𝑏 / 𝑦][〈𝑎, 𝑦〉 / 𝑧]𝜑 ↔ [⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 / 𝑧]𝜑) |
6 | csbopg 4822 | . . . . 5 ⊢ (𝑏 ∈ V → ⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 = 〈⦋𝑏 / 𝑦⦌𝑎, ⦋𝑏 / 𝑦⦌𝑦〉) | |
7 | 6 | elv 3438 | . . . 4 ⊢ ⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 = 〈⦋𝑏 / 𝑦⦌𝑎, ⦋𝑏 / 𝑦⦌𝑦〉 |
8 | vex 3436 | . . . . . 6 ⊢ 𝑏 ∈ V | |
9 | 8 | csbconstgi 3854 | . . . . 5 ⊢ ⦋𝑏 / 𝑦⦌𝑎 = 𝑎 |
10 | 8 | csbvargi 4366 | . . . . 5 ⊢ ⦋𝑏 / 𝑦⦌𝑦 = 𝑏 |
11 | 9, 10 | opeq12i 4809 | . . . 4 ⊢ 〈⦋𝑏 / 𝑦⦌𝑎, ⦋𝑏 / 𝑦⦌𝑦〉 = 〈𝑎, 𝑏〉 |
12 | 7, 11 | eqtri 2766 | . . 3 ⊢ ⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 = 〈𝑎, 𝑏〉 |
13 | dfsbcq 3718 | . . 3 ⊢ (⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 = 〈𝑎, 𝑏〉 → ([⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 / 𝑧]𝜑 ↔ [〈𝑎, 𝑏〉 / 𝑧]𝜑)) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ ([⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 / 𝑧]𝜑 ↔ [〈𝑎, 𝑏〉 / 𝑧]𝜑) |
15 | 3, 5, 14 | 3bitri 297 | 1 ⊢ ([𝑏 / 𝑦][𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑏〉 / 𝑧]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Vcvv 3432 [wsbc 3716 ⦋csb 3832 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 |
This theorem is referenced by: reuop 6196 |
Copyright terms: Public domain | W3C validator |