| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcop | Structured version Visualization version GIF version | ||
| Description: The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of each of its components. (Contributed by AV, 8-Apr-2023.) |
| Ref | Expression |
|---|---|
| sbcop.z | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcop | ⊢ ([𝑏 / 𝑦][𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑏〉 / 𝑧]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcop.z | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | sbcop1 5423 | . . 3 ⊢ ([𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑦〉 / 𝑧]𝜑) |
| 3 | 2 | sbcbii 3793 | . 2 ⊢ ([𝑏 / 𝑦][𝑎 / 𝑥]𝜓 ↔ [𝑏 / 𝑦][〈𝑎, 𝑦〉 / 𝑧]𝜑) |
| 4 | sbcnestgw 4368 | . . 3 ⊢ (𝑏 ∈ V → ([𝑏 / 𝑦][〈𝑎, 𝑦〉 / 𝑧]𝜑 ↔ [⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 / 𝑧]𝜑)) | |
| 5 | 4 | elv 3441 | . 2 ⊢ ([𝑏 / 𝑦][〈𝑎, 𝑦〉 / 𝑧]𝜑 ↔ [⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 / 𝑧]𝜑) |
| 6 | csbopg 4838 | . . . . 5 ⊢ (𝑏 ∈ V → ⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 = 〈⦋𝑏 / 𝑦⦌𝑎, ⦋𝑏 / 𝑦⦌𝑦〉) | |
| 7 | 6 | elv 3441 | . . . 4 ⊢ ⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 = 〈⦋𝑏 / 𝑦⦌𝑎, ⦋𝑏 / 𝑦⦌𝑦〉 |
| 8 | vex 3440 | . . . . . 6 ⊢ 𝑏 ∈ V | |
| 9 | 8 | csbconstgi 3866 | . . . . 5 ⊢ ⦋𝑏 / 𝑦⦌𝑎 = 𝑎 |
| 10 | 8 | csbvargi 4380 | . . . . 5 ⊢ ⦋𝑏 / 𝑦⦌𝑦 = 𝑏 |
| 11 | 9, 10 | opeq12i 4825 | . . . 4 ⊢ 〈⦋𝑏 / 𝑦⦌𝑎, ⦋𝑏 / 𝑦⦌𝑦〉 = 〈𝑎, 𝑏〉 |
| 12 | 7, 11 | eqtri 2754 | . . 3 ⊢ ⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 = 〈𝑎, 𝑏〉 |
| 13 | dfsbcq 3738 | . . 3 ⊢ (⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 = 〈𝑎, 𝑏〉 → ([⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 / 𝑧]𝜑 ↔ [〈𝑎, 𝑏〉 / 𝑧]𝜑)) | |
| 14 | 12, 13 | ax-mp 5 | . 2 ⊢ ([⦋𝑏 / 𝑦⦌〈𝑎, 𝑦〉 / 𝑧]𝜑 ↔ [〈𝑎, 𝑏〉 / 𝑧]𝜑) |
| 15 | 3, 5, 14 | 3bitri 297 | 1 ⊢ ([𝑏 / 𝑦][𝑎 / 𝑥]𝜓 ↔ [〈𝑎, 𝑏〉 / 𝑧]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Vcvv 3436 [wsbc 3736 ⦋csb 3845 〈cop 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 |
| This theorem is referenced by: reuop 6235 |
| Copyright terms: Public domain | W3C validator |