| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2d | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2d.1 | ⊢ Ⅎ𝑥𝜑 |
| csbeq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbeq2d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2d.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | csbeq2d.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | eleq2d 2821 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 4 | 1, 3 | sbcbid 3825 | . . 3 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
| 5 | 4 | abbidv 2802 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 6 | df-csb 3880 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 7 | df-csb 3880 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 8 | 5, 6, 7 | 3eqtr4g 2796 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 {cab 2714 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: poimirlem26 37675 |
| Copyright terms: Public domain | W3C validator |