MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbeq2d Structured version   Visualization version   GIF version

Theorem csbeq2d 3927
Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
csbeq2d.1 𝑥𝜑
csbeq2d.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
csbeq2d (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)

Proof of Theorem csbeq2d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq2d.1 . . . 4 𝑥𝜑
2 csbeq2d.2 . . . . 5 (𝜑𝐵 = 𝐶)
32eleq2d 2830 . . . 4 (𝜑 → (𝑦𝐵𝑦𝐶))
41, 3sbcbid 3863 . . 3 (𝜑 → ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2811 . 2 (𝜑 → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
6 df-csb 3922 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
7 df-csb 3922 . 2 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
85, 6, 73eqtr4g 2805 1 (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wnf 1781  wcel 2108  {cab 2717  [wsbc 3804  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805  df-csb 3922
This theorem is referenced by:  poimirlem26  37606
  Copyright terms: Public domain W3C validator