|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > csbeq2d | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| csbeq2d.1 | ⊢ Ⅎ𝑥𝜑 | 
| csbeq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| csbeq2d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | csbeq2d.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | csbeq2d.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | eleq2d 2826 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) | 
| 4 | 1, 3 | sbcbid 3843 | . . 3 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) | 
| 5 | 4 | abbidv 2807 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) | 
| 6 | df-csb 3899 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 7 | df-csb 3899 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 8 | 5, 6, 7 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 {cab 2713 [wsbc 3787 ⦋csb 3898 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-sbc 3788 df-csb 3899 | 
| This theorem is referenced by: poimirlem26 37654 | 
| Copyright terms: Public domain | W3C validator |