Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | csbeq2dv.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | csbeq2d 3834 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: csbeq2i 3836 csbeq12dv 3837 mpomptsx 7877 dmmpossx 7879 fmpox 7880 el2mpocsbcl 7896 offval22 7899 ovmptss 7904 fmpoco 7906 mposn 7914 mpocurryd 8056 fvmpocurryd 8058 cantnffval 9351 fsumcom2 15414 fprodcom2 15622 bpolylem 15686 bpolyval 15687 ruclem1 15868 natfval 17578 fucval 17591 evlfval 17851 mpfrcl 21205 selvffval 21236 selvfval 21237 selvval 21238 pmatcollpw3lem 21840 fsumcn 23939 fsum2cn 23940 dvmptfsum 25044 ttgval 27140 msrfval 33399 poimirlem5 35709 poimirlem6 35710 poimirlem7 35711 poimirlem8 35712 poimirlem10 35714 poimirlem11 35715 poimirlem12 35716 poimirlem15 35719 poimirlem18 35722 poimirlem21 35725 poimirlem22 35726 poimirlem24 35728 poimirlem26 35730 poimirlem27 35731 cdleme31sde 38326 cdlemeg47rv2 38451 rnghmval 45337 dmmpossx2 45560 |
Copyright terms: Public domain | W3C validator |