MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbeq2dv Structured version   Visualization version   GIF version

Theorem csbeq2dv 3928
Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
csbeq2dv.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
csbeq2dv (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbeq2dv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq2dv.1 . . . . 5 (𝜑𝐵 = 𝐶)
21eleq2d 2830 . . . 4 (𝜑 → (𝑦𝐵𝑦𝐶))
32sbcbidv 3864 . . 3 (𝜑 → ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶))
43abbidv 2811 . 2 (𝜑 → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
5 df-csb 3922 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
6 df-csb 3922 . 2 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
74, 5, 63eqtr4g 2805 1 (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  [wsbc 3804  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805  df-csb 3922
This theorem is referenced by:  csbeq2i  3929  csbeq12dv  3930  mpomptsx  8105  dmmpossx  8107  fmpox  8108  el2mpocsbcl  8126  offval22  8129  ovmptss  8134  fmpoco  8136  mposn  8144  mpocurryd  8310  fvmpocurryd  8312  cantnffval  9732  sumeq2sdv  15751  fsumcom2  15822  prodeq2sdv  15971  fprodcom2  16032  bpolylem  16096  bpolyval  16097  ruclem1  16279  natfval  18014  fucval  18027  evlfval  18287  rnghmval  20466  mpfrcl  22132  selvffval  22160  selvfval  22161  selvval  22162  pmatcollpw3lem  22810  fsumcn  24913  fsum2cn  24914  itgeq1f  25826  itgeq1  25828  dvmptfsum  26033  mulsval  28153  precsexlemcbv  28248  ttgvalOLD  28902  msrfval  35505  poimirlem5  37585  poimirlem6  37586  poimirlem7  37587  poimirlem8  37588  poimirlem10  37590  poimirlem11  37591  poimirlem12  37592  poimirlem15  37595  poimirlem18  37598  poimirlem21  37601  poimirlem22  37602  poimirlem24  37604  poimirlem26  37606  poimirlem27  37607  cdleme31sde  40342  cdlemeg47rv2  40467  dmmpossx2  48061
  Copyright terms: Public domain W3C validator