| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2dv.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2821 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 3 | 2 | sbcbidv 3826 | . . 3 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
| 4 | 3 | abbidv 2802 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 5 | df-csb 3880 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 6 | df-csb 3880 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4g 2796 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2714 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: csbeq2i 3887 csbeq12dv 3888 mpomptsx 8068 dmmpossx 8070 fmpox 8071 el2mpocsbcl 8089 offval22 8092 ovmptss 8097 fmpoco 8099 mposn 8107 mpocurryd 8273 fvmpocurryd 8275 cantnffval 9682 sumeq2sdv 15724 fsumcom2 15795 prodeq2sdv 15944 fprodcom2 16005 bpolylem 16069 bpolyval 16070 ruclem1 16254 natfval 17967 fucval 17979 evlfval 18234 rnghmval 20405 mpfrcl 22048 selvffval 22076 selvfval 22077 selvval 22078 pmatcollpw3lem 22726 fsumcn 24817 fsum2cn 24818 itgeq1f 25729 itgeq1 25731 dvmptfsum 25936 mulsval 28069 precsexlemcbv 28165 msrfval 35564 poimirlem5 37654 poimirlem6 37655 poimirlem7 37656 poimirlem8 37657 poimirlem10 37659 poimirlem11 37660 poimirlem12 37661 poimirlem15 37664 poimirlem18 37667 poimirlem21 37670 poimirlem22 37671 poimirlem24 37673 poimirlem26 37675 poimirlem27 37676 cdleme31sde 40409 cdlemeg47rv2 40534 dmmpossx2 48279 dfswapf2 49145 fucofvalg 49196 dfinito4 49353 |
| Copyright terms: Public domain | W3C validator |