MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbeq2dv Structured version   Visualization version   GIF version

Theorem csbeq2dv 3854
Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
csbeq2dv.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
csbeq2dv (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbeq2dv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq2dv.1 . . . . 5 (𝜑𝐵 = 𝐶)
21eleq2d 2819 . . . 4 (𝜑 → (𝑦𝐵𝑦𝐶))
32sbcbidv 3794 . . 3 (𝜑 → ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶))
43abbidv 2799 . 2 (𝜑 → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
5 df-csb 3848 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
6 df-csb 3848 . 2 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
74, 5, 63eqtr4g 2793 1 (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {cab 2711  [wsbc 3738  csb 3847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-sbc 3739  df-csb 3848
This theorem is referenced by:  csbeq2i  3855  csbeq12dv  3856  mpomptsx  8005  dmmpossx  8007  fmpox  8008  el2mpocsbcl  8024  offval22  8027  ovmptss  8032  fmpoco  8034  mposn  8042  mpocurryd  8208  fvmpocurryd  8210  cantnffval  9563  sumeq2sdv  15620  fsumcom2  15691  prodeq2sdv  15840  fprodcom2  15901  bpolylem  15965  bpolyval  15966  ruclem1  16150  natfval  17866  fucval  17878  evlfval  18133  rnghmval  20368  mpfrcl  22030  selvffval  22058  selvfval  22059  selvval  22060  pmatcollpw3lem  22708  fsumcn  24798  fsum2cn  24799  itgeq1f  25709  itgeq1  25711  dvmptfsum  25916  mulsval  28058  precsexlemcbv  28154  msrfval  35592  poimirlem5  37675  poimirlem6  37676  poimirlem7  37677  poimirlem8  37678  poimirlem10  37680  poimirlem11  37681  poimirlem12  37682  poimirlem15  37685  poimirlem18  37688  poimirlem21  37691  poimirlem22  37692  poimirlem24  37694  poimirlem26  37696  poimirlem27  37697  cdleme31sde  40494  cdlemeg47rv2  40619  dmmpossx2  48451  dfswapf2  49376  fucofvalg  49433  dfinito4  49616
  Copyright terms: Public domain W3C validator