| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2dv.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2815 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 3 | 2 | sbcbidv 3795 | . . 3 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
| 4 | 3 | abbidv 2796 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 5 | df-csb 3849 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 6 | df-csb 3849 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 {cab 2708 [wsbc 3739 ⦋csb 3848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3740 df-csb 3849 |
| This theorem is referenced by: csbeq2i 3856 csbeq12dv 3857 mpomptsx 7991 dmmpossx 7993 fmpox 7994 el2mpocsbcl 8010 offval22 8013 ovmptss 8018 fmpoco 8020 mposn 8028 mpocurryd 8194 fvmpocurryd 8196 cantnffval 9548 sumeq2sdv 15602 fsumcom2 15673 prodeq2sdv 15822 fprodcom2 15883 bpolylem 15947 bpolyval 15948 ruclem1 16132 natfval 17848 fucval 17860 evlfval 18115 rnghmval 20351 mpfrcl 22013 selvffval 22041 selvfval 22042 selvval 22043 pmatcollpw3lem 22691 fsumcn 24781 fsum2cn 24782 itgeq1f 25692 itgeq1 25694 dvmptfsum 25899 mulsval 28041 precsexlemcbv 28137 msrfval 35549 poimirlem5 37644 poimirlem6 37645 poimirlem7 37646 poimirlem8 37647 poimirlem10 37649 poimirlem11 37650 poimirlem12 37651 poimirlem15 37654 poimirlem18 37657 poimirlem21 37660 poimirlem22 37661 poimirlem24 37663 poimirlem26 37665 poimirlem27 37666 cdleme31sde 40403 cdlemeg47rv2 40528 dmmpossx2 48347 dfswapf2 49272 fucofvalg 49329 dfinito4 49512 |
| Copyright terms: Public domain | W3C validator |