![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | csbeq2dv.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | csbeq2d 3896 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⦋csb 3890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-sbc 3775 df-csb 3891 |
This theorem is referenced by: csbeq2i 3898 csbeq12dv 3899 mpomptsx 8067 dmmpossx 8069 fmpox 8070 el2mpocsbcl 8088 offval22 8091 ovmptss 8096 fmpoco 8098 mposn 8106 mpocurryd 8273 fvmpocurryd 8275 cantnffval 9686 fsumcom2 15752 fprodcom2 15960 bpolylem 16024 bpolyval 16025 ruclem1 16207 natfval 17935 fucval 17948 evlfval 18208 rnghmval 20383 mpfrcl 22038 selvffval 22066 selvfval 22067 selvval 22068 pmatcollpw3lem 22715 fsumcn 24818 fsum2cn 24819 dvmptfsum 25937 mulsval 28043 precsexlemcbv 28138 ttgvalOLD 28736 msrfval 35217 poimirlem5 37168 poimirlem6 37169 poimirlem7 37170 poimirlem8 37171 poimirlem10 37173 poimirlem11 37174 poimirlem12 37175 poimirlem15 37178 poimirlem18 37181 poimirlem21 37184 poimirlem22 37185 poimirlem24 37187 poimirlem26 37189 poimirlem27 37190 cdleme31sde 39927 cdlemeg47rv2 40052 dmmpossx2 47512 |
Copyright terms: Public domain | W3C validator |