Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | csbeq2dv.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | csbeq2d 3838 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: csbeq2i 3840 csbeq12dv 3841 mpomptsx 7904 dmmpossx 7906 fmpox 7907 el2mpocsbcl 7925 offval22 7928 ovmptss 7933 fmpoco 7935 mposn 7943 mpocurryd 8085 fvmpocurryd 8087 cantnffval 9421 fsumcom2 15486 fprodcom2 15694 bpolylem 15758 bpolyval 15759 ruclem1 15940 natfval 17662 fucval 17675 evlfval 17935 mpfrcl 21295 selvffval 21326 selvfval 21327 selvval 21328 pmatcollpw3lem 21932 fsumcn 24033 fsum2cn 24034 dvmptfsum 25139 ttgvalOLD 27237 msrfval 33499 poimirlem5 35782 poimirlem6 35783 poimirlem7 35784 poimirlem8 35785 poimirlem10 35787 poimirlem11 35788 poimirlem12 35789 poimirlem15 35792 poimirlem18 35795 poimirlem21 35798 poimirlem22 35799 poimirlem24 35801 poimirlem26 35803 poimirlem27 35804 cdleme31sde 38399 cdlemeg47rv2 38524 rnghmval 45449 dmmpossx2 45672 |
Copyright terms: Public domain | W3C validator |