| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2dv.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2814 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 3 | 2 | sbcbidv 3809 | . . 3 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
| 4 | 3 | abbidv 2795 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 5 | df-csb 3863 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 6 | df-csb 3863 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 [wsbc 3753 ⦋csb 3862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 df-csb 3863 |
| This theorem is referenced by: csbeq2i 3870 csbeq12dv 3871 mpomptsx 8043 dmmpossx 8045 fmpox 8046 el2mpocsbcl 8064 offval22 8067 ovmptss 8072 fmpoco 8074 mposn 8082 mpocurryd 8248 fvmpocurryd 8250 cantnffval 9616 sumeq2sdv 15669 fsumcom2 15740 prodeq2sdv 15889 fprodcom2 15950 bpolylem 16014 bpolyval 16015 ruclem1 16199 natfval 17911 fucval 17923 evlfval 18178 rnghmval 20349 mpfrcl 21992 selvffval 22020 selvfval 22021 selvval 22022 pmatcollpw3lem 22670 fsumcn 24761 fsum2cn 24762 itgeq1f 25672 itgeq1 25674 dvmptfsum 25879 mulsval 28012 precsexlemcbv 28108 msrfval 35524 poimirlem5 37619 poimirlem6 37620 poimirlem7 37621 poimirlem8 37622 poimirlem10 37624 poimirlem11 37625 poimirlem12 37626 poimirlem15 37629 poimirlem18 37632 poimirlem21 37635 poimirlem22 37636 poimirlem24 37638 poimirlem26 37640 poimirlem27 37641 cdleme31sde 40379 cdlemeg47rv2 40504 dmmpossx2 48325 dfswapf2 49250 fucofvalg 49307 dfinito4 49490 |
| Copyright terms: Public domain | W3C validator |