MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbeq2dv Structured version   Visualization version   GIF version

Theorem csbeq2dv 3855
Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
csbeq2dv.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
csbeq2dv (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbeq2dv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq2dv.1 . . . . 5 (𝜑𝐵 = 𝐶)
21eleq2d 2815 . . . 4 (𝜑 → (𝑦𝐵𝑦𝐶))
32sbcbidv 3795 . . 3 (𝜑 → ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶))
43abbidv 2796 . 2 (𝜑 → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
5 df-csb 3849 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
6 df-csb 3849 . 2 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
74, 5, 63eqtr4g 2790 1 (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  {cab 2708  [wsbc 3739  csb 3848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-sbc 3740  df-csb 3849
This theorem is referenced by:  csbeq2i  3856  csbeq12dv  3857  mpomptsx  7991  dmmpossx  7993  fmpox  7994  el2mpocsbcl  8010  offval22  8013  ovmptss  8018  fmpoco  8020  mposn  8028  mpocurryd  8194  fvmpocurryd  8196  cantnffval  9548  sumeq2sdv  15602  fsumcom2  15673  prodeq2sdv  15822  fprodcom2  15883  bpolylem  15947  bpolyval  15948  ruclem1  16132  natfval  17848  fucval  17860  evlfval  18115  rnghmval  20351  mpfrcl  22013  selvffval  22041  selvfval  22042  selvval  22043  pmatcollpw3lem  22691  fsumcn  24781  fsum2cn  24782  itgeq1f  25692  itgeq1  25694  dvmptfsum  25899  mulsval  28041  precsexlemcbv  28137  msrfval  35549  poimirlem5  37644  poimirlem6  37645  poimirlem7  37646  poimirlem8  37647  poimirlem10  37649  poimirlem11  37650  poimirlem12  37651  poimirlem15  37654  poimirlem18  37657  poimirlem21  37660  poimirlem22  37661  poimirlem24  37663  poimirlem26  37665  poimirlem27  37666  cdleme31sde  40403  cdlemeg47rv2  40528  dmmpossx2  48347  dfswapf2  49272  fucofvalg  49329  dfinito4  49512
  Copyright terms: Public domain W3C validator