![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | csbeq2dv.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | csbeq2d 3898 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⦋csb 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-sbc 3777 df-csb 3893 |
This theorem is referenced by: csbeq2i 3900 csbeq12dv 3901 mpomptsx 8052 dmmpossx 8054 fmpox 8055 el2mpocsbcl 8073 offval22 8076 ovmptss 8081 fmpoco 8083 mposn 8091 mpocurryd 8256 fvmpocurryd 8258 cantnffval 9660 fsumcom2 15724 fprodcom2 15932 bpolylem 15996 bpolyval 15997 ruclem1 16178 natfval 17901 fucval 17914 evlfval 18174 rnghmval 20331 mpfrcl 21867 selvffval 21898 selvfval 21899 selvval 21900 pmatcollpw3lem 22505 fsumcn 24608 fsum2cn 24609 dvmptfsum 25727 mulsval 27804 precsexlemcbv 27891 ttgvalOLD 28394 msrfval 34826 poimirlem5 36796 poimirlem6 36797 poimirlem7 36798 poimirlem8 36799 poimirlem10 36801 poimirlem11 36802 poimirlem12 36803 poimirlem15 36806 poimirlem18 36809 poimirlem21 36812 poimirlem22 36813 poimirlem24 36815 poimirlem26 36817 poimirlem27 36818 cdleme31sde 39559 cdlemeg47rv2 39684 dmmpossx2 47100 |
Copyright terms: Public domain | W3C validator |