| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2dv.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2819 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 3 | 2 | sbcbidv 3794 | . . 3 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
| 4 | 3 | abbidv 2799 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 5 | df-csb 3848 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 6 | df-csb 3848 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4g 2793 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {cab 2711 [wsbc 3738 ⦋csb 3847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3739 df-csb 3848 |
| This theorem is referenced by: csbeq2i 3855 csbeq12dv 3856 mpomptsx 8005 dmmpossx 8007 fmpox 8008 el2mpocsbcl 8024 offval22 8027 ovmptss 8032 fmpoco 8034 mposn 8042 mpocurryd 8208 fvmpocurryd 8210 cantnffval 9563 sumeq2sdv 15620 fsumcom2 15691 prodeq2sdv 15840 fprodcom2 15901 bpolylem 15965 bpolyval 15966 ruclem1 16150 natfval 17866 fucval 17878 evlfval 18133 rnghmval 20368 mpfrcl 22030 selvffval 22058 selvfval 22059 selvval 22060 pmatcollpw3lem 22708 fsumcn 24798 fsum2cn 24799 itgeq1f 25709 itgeq1 25711 dvmptfsum 25916 mulsval 28058 precsexlemcbv 28154 msrfval 35592 poimirlem5 37675 poimirlem6 37676 poimirlem7 37677 poimirlem8 37678 poimirlem10 37680 poimirlem11 37681 poimirlem12 37682 poimirlem15 37685 poimirlem18 37688 poimirlem21 37691 poimirlem22 37692 poimirlem24 37694 poimirlem26 37696 poimirlem27 37697 cdleme31sde 40494 cdlemeg47rv2 40619 dmmpossx2 48451 dfswapf2 49376 fucofvalg 49433 dfinito4 49616 |
| Copyright terms: Public domain | W3C validator |