| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2dv.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2814 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 3 | 2 | sbcbidv 3800 | . . 3 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
| 4 | 3 | abbidv 2795 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 5 | df-csb 3854 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 6 | df-csb 3854 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 [wsbc 3744 ⦋csb 3853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3745 df-csb 3854 |
| This theorem is referenced by: csbeq2i 3861 csbeq12dv 3862 mpomptsx 8006 dmmpossx 8008 fmpox 8009 el2mpocsbcl 8025 offval22 8028 ovmptss 8033 fmpoco 8035 mposn 8043 mpocurryd 8209 fvmpocurryd 8211 cantnffval 9578 sumeq2sdv 15628 fsumcom2 15699 prodeq2sdv 15848 fprodcom2 15909 bpolylem 15973 bpolyval 15974 ruclem1 16158 natfval 17874 fucval 17886 evlfval 18141 rnghmval 20343 mpfrcl 22008 selvffval 22036 selvfval 22037 selvval 22038 pmatcollpw3lem 22686 fsumcn 24777 fsum2cn 24778 itgeq1f 25688 itgeq1 25690 dvmptfsum 25895 mulsval 28035 precsexlemcbv 28131 msrfval 35509 poimirlem5 37604 poimirlem6 37605 poimirlem7 37606 poimirlem8 37607 poimirlem10 37609 poimirlem11 37610 poimirlem12 37611 poimirlem15 37614 poimirlem18 37617 poimirlem21 37620 poimirlem22 37621 poimirlem24 37623 poimirlem26 37625 poimirlem27 37626 cdleme31sde 40364 cdlemeg47rv2 40489 dmmpossx2 48309 dfswapf2 49234 fucofvalg 49291 dfinito4 49474 |
| Copyright terms: Public domain | W3C validator |