| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2dv.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2815 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 3 | 2 | sbcbidv 3811 | . . 3 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
| 4 | 3 | abbidv 2796 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 5 | df-csb 3865 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 6 | df-csb 3865 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 [wsbc 3755 ⦋csb 3864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3756 df-csb 3865 |
| This theorem is referenced by: csbeq2i 3872 csbeq12dv 3873 mpomptsx 8045 dmmpossx 8047 fmpox 8048 el2mpocsbcl 8066 offval22 8069 ovmptss 8074 fmpoco 8076 mposn 8084 mpocurryd 8250 fvmpocurryd 8252 cantnffval 9622 sumeq2sdv 15675 fsumcom2 15746 prodeq2sdv 15895 fprodcom2 15956 bpolylem 16020 bpolyval 16021 ruclem1 16205 natfval 17917 fucval 17929 evlfval 18184 rnghmval 20355 mpfrcl 21998 selvffval 22026 selvfval 22027 selvval 22028 pmatcollpw3lem 22676 fsumcn 24767 fsum2cn 24768 itgeq1f 25678 itgeq1 25680 dvmptfsum 25885 mulsval 28018 precsexlemcbv 28114 msrfval 35524 poimirlem5 37614 poimirlem6 37615 poimirlem7 37616 poimirlem8 37617 poimirlem10 37619 poimirlem11 37620 poimirlem12 37621 poimirlem15 37624 poimirlem18 37627 poimirlem21 37630 poimirlem22 37631 poimirlem24 37633 poimirlem26 37635 poimirlem27 37636 cdleme31sde 40374 cdlemeg47rv2 40499 dmmpossx2 48315 dfswapf2 49240 fucofvalg 49297 dfinito4 49480 |
| Copyright terms: Public domain | W3C validator |