![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2dv.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | eleq2d 2830 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
3 | 2 | sbcbidv 3864 | . . 3 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
4 | 3 | abbidv 2811 | . 2 ⊢ (𝜑 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
5 | df-csb 3922 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
6 | df-csb 3922 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
7 | 4, 5, 6 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {cab 2717 [wsbc 3804 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: csbeq2i 3929 csbeq12dv 3930 mpomptsx 8105 dmmpossx 8107 fmpox 8108 el2mpocsbcl 8126 offval22 8129 ovmptss 8134 fmpoco 8136 mposn 8144 mpocurryd 8310 fvmpocurryd 8312 cantnffval 9732 sumeq2sdv 15751 fsumcom2 15822 prodeq2sdv 15971 fprodcom2 16032 bpolylem 16096 bpolyval 16097 ruclem1 16279 natfval 18014 fucval 18027 evlfval 18287 rnghmval 20466 mpfrcl 22132 selvffval 22160 selvfval 22161 selvval 22162 pmatcollpw3lem 22810 fsumcn 24913 fsum2cn 24914 itgeq1f 25826 itgeq1 25828 dvmptfsum 26033 mulsval 28153 precsexlemcbv 28248 ttgvalOLD 28902 msrfval 35505 poimirlem5 37585 poimirlem6 37586 poimirlem7 37587 poimirlem8 37588 poimirlem10 37590 poimirlem11 37591 poimirlem12 37592 poimirlem15 37595 poimirlem18 37598 poimirlem21 37601 poimirlem22 37602 poimirlem24 37604 poimirlem26 37606 poimirlem27 37607 cdleme31sde 40342 cdlemeg47rv2 40467 dmmpossx2 48061 |
Copyright terms: Public domain | W3C validator |