Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1921 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | csbeq2dv.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | csbeq2d 3843 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⦋csb 3837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-sbc 3721 df-csb 3838 |
This theorem is referenced by: csbeq2i 3845 csbeq12dv 3846 mpomptsx 7891 dmmpossx 7893 fmpox 7894 el2mpocsbcl 7910 offval22 7913 ovmptss 7918 fmpoco 7920 mposn 7928 mpocurryd 8070 fvmpocurryd 8072 cantnffval 9391 fsumcom2 15476 fprodcom2 15684 bpolylem 15748 bpolyval 15749 ruclem1 15930 natfval 17652 fucval 17665 evlfval 17925 mpfrcl 21285 selvffval 21316 selvfval 21317 selvval 21318 pmatcollpw3lem 21922 fsumcn 24023 fsum2cn 24024 dvmptfsum 25129 ttgvalOLD 27227 msrfval 33487 poimirlem5 35770 poimirlem6 35771 poimirlem7 35772 poimirlem8 35773 poimirlem10 35775 poimirlem11 35776 poimirlem12 35777 poimirlem15 35780 poimirlem18 35783 poimirlem21 35786 poimirlem22 35787 poimirlem24 35789 poimirlem26 35791 poimirlem27 35792 cdleme31sde 38387 cdlemeg47rv2 38512 rnghmval 45410 dmmpossx2 45633 |
Copyright terms: Public domain | W3C validator |