![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2dv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbeq2dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | csbeq2dv.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | csbeq2d 3900 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⦋csb 3894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-sbc 3779 df-csb 3895 |
This theorem is referenced by: csbeq2i 3902 csbeq12dv 3903 mpomptsx 8050 dmmpossx 8052 fmpox 8053 el2mpocsbcl 8071 offval22 8074 ovmptss 8079 fmpoco 8081 mposn 8089 mpocurryd 8254 fvmpocurryd 8256 cantnffval 9658 fsumcom2 15720 fprodcom2 15928 bpolylem 15992 bpolyval 15993 ruclem1 16174 natfval 17897 fucval 17910 evlfval 18170 mpfrcl 21648 selvffval 21679 selvfval 21680 selvval 21681 pmatcollpw3lem 22285 fsumcn 24386 fsum2cn 24387 dvmptfsum 25492 mulsval 27565 precsexlemcbv 27652 ttgvalOLD 28127 msrfval 34528 poimirlem5 36493 poimirlem6 36494 poimirlem7 36495 poimirlem8 36496 poimirlem10 36498 poimirlem11 36499 poimirlem12 36500 poimirlem15 36503 poimirlem18 36506 poimirlem21 36509 poimirlem22 36510 poimirlem24 36512 poimirlem26 36514 poimirlem27 36515 cdleme31sde 39256 cdlemeg47rv2 39381 rnghmval 46689 dmmpossx2 47012 |
Copyright terms: Public domain | W3C validator |