| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fzofi 14016 | . . . . . 6
⊢
(0..^𝐾) ∈
Fin | 
| 2 |  | fzfi 14014 | . . . . . 6
⊢
(1...𝑁) ∈
Fin | 
| 3 |  | mapfi 9389 | . . . . . 6
⊢
(((0..^𝐾) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ ((0..^𝐾)
↑m (1...𝑁))
∈ Fin) | 
| 4 | 1, 2, 3 | mp2an 692 | . . . . 5
⊢
((0..^𝐾)
↑m (1...𝑁))
∈ Fin | 
| 5 |  | mapfi 9389 | . . . . . . 7
⊢
(((1...𝑁) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ ((1...𝑁)
↑m (1...𝑁))
∈ Fin) | 
| 6 | 2, 2, 5 | mp2an 692 | . . . . . 6
⊢
((1...𝑁)
↑m (1...𝑁))
∈ Fin | 
| 7 |  | f1of 6847 | . . . . . . . 8
⊢ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑓:(1...𝑁)⟶(1...𝑁)) | 
| 8 | 7 | ss2abi 4066 | . . . . . . 7
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ⊆ {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} | 
| 9 |  | ovex 7465 | . . . . . . . 8
⊢
(1...𝑁) ∈
V | 
| 10 | 9, 9 | mapval 8879 | . . . . . . 7
⊢
((1...𝑁)
↑m (1...𝑁))
= {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} | 
| 11 | 8, 10 | sseqtrri 4032 | . . . . . 6
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ⊆ ((1...𝑁) ↑m (1...𝑁)) | 
| 12 |  | ssfi 9214 | . . . . . 6
⊢
((((1...𝑁)
↑m (1...𝑁))
∈ Fin ∧ {𝑓 ∣
𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ⊆ ((1...𝑁) ↑m (1...𝑁))) → {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin) | 
| 13 | 6, 11, 12 | mp2an 692 | . . . . 5
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin | 
| 14 | 4, 13 | pm3.2i 470 | . . . 4
⊢
(((0..^𝐾)
↑m (1...𝑁))
∈ Fin ∧ {𝑓 ∣
𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin) | 
| 15 |  | xpfi 9359 | . . . 4
⊢
((((0..^𝐾)
↑m (1...𝑁))
∈ Fin ∧ {𝑓 ∣
𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin) → (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ Fin) | 
| 16 | 14, 15 | mp1i 13 | . . 3
⊢ (𝜑 → (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ Fin) | 
| 17 |  | 2z 12651 | . . . 4
⊢ 2 ∈
ℤ | 
| 18 | 17 | a1i 11 | . . 3
⊢ (𝜑 → 2 ∈
ℤ) | 
| 19 |  | snfi 9084 | . . . . . . 7
⊢ {𝑥} ∈ Fin | 
| 20 |  | fzfi 14014 | . . . . . . . 8
⊢
(0...𝑁) ∈
Fin | 
| 21 |  | rabfi 9304 | . . . . . . . 8
⊢
((0...𝑁) ∈ Fin
→ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ∈ Fin) | 
| 22 | 20, 21 | ax-mp 5 | . . . . . . 7
⊢ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ∈ Fin | 
| 23 |  | xpfi 9359 | . . . . . . 7
⊢ (({𝑥} ∈ Fin ∧ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ∈ Fin) → ({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∈ Fin) | 
| 24 | 19, 22, 23 | mp2an 692 | . . . . . 6
⊢ ({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∈ Fin | 
| 25 |  | hashcl 14396 | . . . . . 6
⊢ (({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∈ Fin → (♯‘({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) ∈
ℕ0) | 
| 26 | 24, 25 | ax-mp 5 | . . . . 5
⊢
(♯‘({𝑥}
× {𝑦 ∈
(0...𝑁) ∣
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) ∈
ℕ0 | 
| 27 | 26 | nn0zi 12644 | . . . 4
⊢
(♯‘({𝑥}
× {𝑦 ∈
(0...𝑁) ∣
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) ∈ ℤ | 
| 28 | 27 | a1i 11 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → (♯‘({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) ∈ ℤ) | 
| 29 |  | poimir.0 | . . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 30 | 29 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) → 𝑁 ∈ ℕ) | 
| 31 |  | nfv 1913 | . . . . . . . . . 10
⊢
Ⅎ𝑗 𝑝 = ((1st ‘𝑡) ∘f +
((((2nd ‘𝑡) “ (1...𝑘)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑘 + 1)...𝑁)) × {0}))) | 
| 32 |  | nfcsb1v 3922 | . . . . . . . . . . 11
⊢
Ⅎ𝑗⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 | 
| 33 | 32 | nfeq2 2922 | . . . . . . . . . 10
⊢
Ⅎ𝑗 𝐵 = ⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 | 
| 34 | 31, 33 | nfim 1895 | . . . . . . . . 9
⊢
Ⅎ𝑗(𝑝 = ((1st ‘𝑡) ∘f +
((((2nd ‘𝑡) “ (1...𝑘)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑘 + 1)...𝑁)) × {0}))) → 𝐵 = ⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶) | 
| 35 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (1...𝑗) = (1...𝑘)) | 
| 36 | 35 | imaeq2d 6077 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → ((2nd ‘𝑡) “ (1...𝑗)) = ((2nd
‘𝑡) “
(1...𝑘))) | 
| 37 | 36 | xpeq1d 5713 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (((2nd ‘𝑡) “ (1...𝑗)) × {1}) =
(((2nd ‘𝑡)
“ (1...𝑘)) ×
{1})) | 
| 38 |  | oveq1 7439 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1)) | 
| 39 | 38 | oveq1d 7447 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → ((𝑗 + 1)...𝑁) = ((𝑘 + 1)...𝑁)) | 
| 40 | 39 | imaeq2d 6077 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → ((2nd ‘𝑡) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘𝑡) “ ((𝑘 + 1)...𝑁))) | 
| 41 | 40 | xpeq1d 5713 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (((2nd ‘𝑡) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘𝑡) “ ((𝑘 + 1)...𝑁)) × {0})) | 
| 42 | 37, 41 | uneq12d 4168 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑡)
“ ((𝑗 + 1)...𝑁)) × {0})) =
((((2nd ‘𝑡) “ (1...𝑘)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑘 + 1)...𝑁)) × {0}))) | 
| 43 | 42 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((1st ‘𝑡) ∘f +
((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑘)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑘 + 1)...𝑁)) × {0})))) | 
| 44 | 43 | eqeq2d 2747 | . . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑝 = ((1st ‘𝑡) ∘f + ((((2nd
‘𝑡) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑡)
“ ((𝑗 + 1)...𝑁)) × {0}))) ↔ 𝑝 = ((1st ‘𝑡) ∘f +
((((2nd ‘𝑡) “ (1...𝑘)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑘 + 1)...𝑁)) × {0}))))) | 
| 45 |  | csbeq1a 3912 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ⦋𝑡 / 𝑠⦌𝐶 = ⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶) | 
| 46 | 45 | eqeq2d 2747 | . . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝐵 = ⦋𝑡 / 𝑠⦌𝐶 ↔ 𝐵 = ⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶)) | 
| 47 | 44, 46 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑝 = ((1st ‘𝑡) ∘f + ((((2nd
‘𝑡) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑡)
“ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = ⦋𝑡 / 𝑠⦌𝐶) ↔ (𝑝 = ((1st ‘𝑡) ∘f + ((((2nd
‘𝑡) “
(1...𝑘)) × {1}) ∪
(((2nd ‘𝑡)
“ ((𝑘 + 1)...𝑁)) × {0}))) → 𝐵 = ⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶))) | 
| 48 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑠 𝑝 = ((1st ‘𝑡) ∘f +
((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑁)) × {0}))) | 
| 49 |  | nfcsb1v 3922 | . . . . . . . . . . . 12
⊢
Ⅎ𝑠⦋𝑡 / 𝑠⦌𝐶 | 
| 50 | 49 | nfeq2 2922 | . . . . . . . . . . 11
⊢
Ⅎ𝑠 𝐵 = ⦋𝑡 / 𝑠⦌𝐶 | 
| 51 | 48, 50 | nfim 1895 | . . . . . . . . . 10
⊢
Ⅎ𝑠(𝑝 = ((1st ‘𝑡) ∘f +
((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = ⦋𝑡 / 𝑠⦌𝐶) | 
| 52 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → (1st ‘𝑠) = (1st ‘𝑡)) | 
| 53 |  | fveq2 6905 | . . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑡 → (2nd ‘𝑠) = (2nd ‘𝑡)) | 
| 54 | 53 | imaeq1d 6076 | . . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑡 → ((2nd ‘𝑠) “ (1...𝑗)) = ((2nd
‘𝑡) “
(1...𝑗))) | 
| 55 | 54 | xpeq1d 5713 | . . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → (((2nd ‘𝑠) “ (1...𝑗)) × {1}) =
(((2nd ‘𝑡)
“ (1...𝑗)) ×
{1})) | 
| 56 | 53 | imaeq1d 6076 | . . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑡 → ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘𝑡) “ ((𝑗 + 1)...𝑁))) | 
| 57 | 56 | xpeq1d 5713 | . . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑁)) × {0})) | 
| 58 | 55, 57 | uneq12d 4168 | . . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0})) =
((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑁)) × {0}))) | 
| 59 | 52, 58 | oveq12d 7450 | . . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 60 | 59 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (𝑝 = ((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) ↔ 𝑝 = ((1st ‘𝑡) ∘f +
((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑁)) × {0}))))) | 
| 61 |  | csbeq1a 3912 | . . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → 𝐶 = ⦋𝑡 / 𝑠⦌𝐶) | 
| 62 | 61 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (𝐵 = 𝐶 ↔ 𝐵 = ⦋𝑡 / 𝑠⦌𝐶)) | 
| 63 | 60, 62 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑠 = 𝑡 → ((𝑝 = ((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) ↔ (𝑝 = ((1st ‘𝑡) ∘f + ((((2nd
‘𝑡) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑡)
“ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = ⦋𝑡 / 𝑠⦌𝐶))) | 
| 64 |  | poimirlem28.1 | . . . . . . . . . 10
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) | 
| 65 | 51, 63, 64 | chvarfv 2239 | . . . . . . . . 9
⊢ (𝑝 = ((1st ‘𝑡) ∘f +
((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = ⦋𝑡 / 𝑠⦌𝐶) | 
| 66 | 34, 47, 65 | chvarfv 2239 | . . . . . . . 8
⊢ (𝑝 = ((1st ‘𝑡) ∘f +
((((2nd ‘𝑡) “ (1...𝑘)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑘 + 1)...𝑁)) × {0}))) → 𝐵 = ⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶) | 
| 67 |  | poimirlem28.2 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) | 
| 68 | 67 | ad4ant14 752 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) | 
| 69 |  | xp1st 8047 | . . . . . . . . . 10
⊢ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘𝑥) ∈ ((0..^𝐾) ↑m (1...𝑁))) | 
| 70 |  | elmapi 8890 | . . . . . . . . . 10
⊢
((1st ‘𝑥) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘𝑥):(1...𝑁)⟶(0..^𝐾)) | 
| 71 | 69, 70 | syl 17 | . . . . . . . . 9
⊢ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘𝑥):(1...𝑁)⟶(0..^𝐾)) | 
| 72 | 71 | ad2antlr 727 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) → (1st ‘𝑥):(1...𝑁)⟶(0..^𝐾)) | 
| 73 |  | xp2nd 8048 | . . . . . . . . . 10
⊢ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘𝑥) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) | 
| 74 |  | fvex 6918 | . . . . . . . . . . 11
⊢
(2nd ‘𝑥) ∈ V | 
| 75 |  | f1oeq1 6835 | . . . . . . . . . . 11
⊢ (𝑓 = (2nd ‘𝑥) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘𝑥):(1...𝑁)–1-1-onto→(1...𝑁))) | 
| 76 | 74, 75 | elab 3678 | . . . . . . . . . 10
⊢
((2nd ‘𝑥) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘𝑥):(1...𝑁)–1-1-onto→(1...𝑁)) | 
| 77 | 73, 76 | sylib 218 | . . . . . . . . 9
⊢ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘𝑥):(1...𝑁)–1-1-onto→(1...𝑁)) | 
| 78 | 77 | ad2antlr 727 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) → (2nd ‘𝑥):(1...𝑁)–1-1-onto→(1...𝑁)) | 
| 79 |  | nfcv 2904 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝑁 | 
| 80 |  | nfcv 2904 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝑥 | 
| 81 | 80, 32 | nfcsbw 3924 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 | 
| 82 | 79, 81 | nfne 3042 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑁 ≠ ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 | 
| 83 |  | nfcv 2904 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡𝐶 | 
| 84 | 83, 49, 61 | cbvcsbw 3908 | . . . . . . . . . . . . . 14
⊢
⦋𝑥 /
𝑠⦌𝐶 = ⦋𝑥 / 𝑡⦌⦋𝑡 / 𝑠⦌𝐶 | 
| 85 | 45 | csbeq2dv 3905 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → ⦋𝑥 / 𝑡⦌⦋𝑡 / 𝑠⦌𝐶 = ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶) | 
| 86 | 84, 85 | eqtrid 2788 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → ⦋𝑥 / 𝑠⦌𝐶 = ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶) | 
| 87 | 86 | neeq2d 3000 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 ↔ 𝑁 ≠ ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶)) | 
| 88 | 82, 87 | rspc 3609 | . . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝑁) → (∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 → 𝑁 ≠ ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶)) | 
| 89 | 88 | impcom 407 | . . . . . . . . . 10
⊢
((∀𝑗 ∈
(0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ≠ ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶) | 
| 90 | 89 | adantll 714 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ≠ ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶) | 
| 91 |  | 1st2nd2 8054 | . . . . . . . . . . 11
⊢ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → 𝑥 = 〈(1st ‘𝑥), (2nd ‘𝑥)〉) | 
| 92 | 91 | csbeq1d 3902 | . . . . . . . . . 10
⊢ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 = ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶) | 
| 93 | 92 | ad3antlr 731 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) ∧ 𝑘 ∈ (0...𝑁)) → ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 = ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶) | 
| 94 | 90, 93 | neeqtrd 3009 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ≠ ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶) | 
| 95 | 30, 66, 68, 72, 78, 94 | poimirlem25 37653 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) → 2 ∥ (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑘 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶})) | 
| 96 |  | nfv 1913 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑖 = ⦋𝑥 / 𝑠⦌𝐶 | 
| 97 | 81 | nfeq2 2922 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑗 𝑖 = ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 | 
| 98 | 86 | eqeq2d 2747 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → (𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶)) | 
| 99 | 96, 97, 98 | cbvrexw 3306 | . . . . . . . . . . . . 13
⊢
(∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ↔ ∃𝑘 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶) | 
| 100 | 92 | eqeq2d 2747 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (𝑖 = ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶)) | 
| 101 | 100 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (∃𝑘 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 ↔ ∃𝑘 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶)) | 
| 102 | 99, 101 | bitr2id 284 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (∃𝑘 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶)) | 
| 103 | 102 | ralbidv 3177 | . . . . . . . . . . 11
⊢ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑘 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶)) | 
| 104 |  | iba 527 | . . . . . . . . . . 11
⊢
(∀𝑗 ∈
(0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶))) | 
| 105 | 103, 104 | sylan9bb 509 | . . . . . . . . . 10
⊢ ((𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑘 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶 ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶))) | 
| 106 | 105 | rabbidv 3443 | . . . . . . . . 9
⊢ ((𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) → {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑘 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶} = {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) | 
| 107 | 106 | fveq2d 6909 | . . . . . . . 8
⊢ ((𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) → (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑘 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶}) = (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) | 
| 108 | 107 | adantll 714 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) → (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑘 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈(1st
‘𝑥), (2nd
‘𝑥)〉 / 𝑡⦌⦋𝑘 / 𝑗⦌⦋𝑡 / 𝑠⦌𝐶}) = (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) | 
| 109 | 95, 108 | breqtrd 5168 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) → 2 ∥ (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) | 
| 110 | 109 | ex 412 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → (∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 → 2 ∥ (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}))) | 
| 111 |  | dvds0 16310 | . . . . . . . 8
⊢ (2 ∈
ℤ → 2 ∥ 0) | 
| 112 | 17, 111 | ax-mp 5 | . . . . . . 7
⊢ 2 ∥
0 | 
| 113 |  | hash0 14407 | . . . . . . 7
⊢
(♯‘∅) = 0 | 
| 114 | 112, 113 | breqtrri 5169 | . . . . . 6
⊢ 2 ∥
(♯‘∅) | 
| 115 |  | simpr 484 | . . . . . . . . . 10
⊢
((∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) → ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) | 
| 116 | 115 | con3i 154 | . . . . . . . . 9
⊢ (¬
∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 → ¬ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)) | 
| 117 | 116 | ralrimivw 3149 | . . . . . . . 8
⊢ (¬
∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 → ∀𝑦 ∈ (0...𝑁) ¬ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)) | 
| 118 |  | rabeq0 4387 | . . . . . . . 8
⊢ ({𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} = ∅ ↔ ∀𝑦 ∈ (0...𝑁) ¬ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)) | 
| 119 | 117, 118 | sylibr 234 | . . . . . . 7
⊢ (¬
∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 → {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} = ∅) | 
| 120 | 119 | fveq2d 6909 | . . . . . 6
⊢ (¬
∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 → (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) =
(♯‘∅)) | 
| 121 | 114, 120 | breqtrrid 5180 | . . . . 5
⊢ (¬
∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 → 2 ∥ (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) | 
| 122 | 110, 121 | pm2.61d1 180 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → 2 ∥ (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) | 
| 123 |  | hashxp 14474 | . . . . . 6
⊢ (({𝑥} ∈ Fin ∧ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ∈ Fin) → (♯‘({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) = ((♯‘{𝑥}) · (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}))) | 
| 124 | 19, 22, 123 | mp2an 692 | . . . . 5
⊢
(♯‘({𝑥}
× {𝑦 ∈
(0...𝑁) ∣
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) = ((♯‘{𝑥}) · (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) | 
| 125 |  | vex 3483 | . . . . . . 7
⊢ 𝑥 ∈ V | 
| 126 |  | hashsng 14409 | . . . . . . 7
⊢ (𝑥 ∈ V →
(♯‘{𝑥}) =
1) | 
| 127 | 125, 126 | ax-mp 5 | . . . . . 6
⊢
(♯‘{𝑥})
= 1 | 
| 128 | 127 | oveq1i 7442 | . . . . 5
⊢
((♯‘{𝑥})
· (♯‘{𝑦
∈ (0...𝑁) ∣
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) = (1 · (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) | 
| 129 |  | hashcl 14396 | . . . . . . . 8
⊢ ({𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ∈ Fin → (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∈
ℕ0) | 
| 130 | 22, 129 | ax-mp 5 | . . . . . . 7
⊢
(♯‘{𝑦
∈ (0...𝑁) ∣
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∈
ℕ0 | 
| 131 | 130 | nn0cni 12540 | . . . . . 6
⊢
(♯‘{𝑦
∈ (0...𝑁) ∣
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∈ ℂ | 
| 132 | 131 | mullidi 11267 | . . . . 5
⊢ (1
· (♯‘{𝑦
∈ (0...𝑁) ∣
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) = (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) | 
| 133 | 124, 128,
132 | 3eqtri 2768 | . . . 4
⊢
(♯‘({𝑥}
× {𝑦 ∈
(0...𝑁) ∣
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) = (♯‘{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) | 
| 134 | 122, 133 | breqtrrdi 5184 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → 2 ∥ (♯‘({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}))) | 
| 135 | 16, 18, 28, 134 | fsumdvds 16346 | . 2
⊢ (𝜑 → 2 ∥ Σ𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(♯‘({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}))) | 
| 136 | 4, 13, 15 | mp2an 692 | . . . . . 6
⊢
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ Fin | 
| 137 |  | xpfi 9359 | . . . . . 6
⊢
(((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ Fin ∧ (0...𝑁) ∈ Fin) → ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∈ Fin) | 
| 138 | 136, 20, 137 | mp2an 692 | . . . . 5
⊢
((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∈ Fin | 
| 139 |  | rabfi 9304 | . . . . 5
⊢
(((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∈ Fin → {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∈ Fin) | 
| 140 | 138, 139 | ax-mp 5 | . . . 4
⊢ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∈ Fin | 
| 141 | 29 | nncnd 12283 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 142 |  | npcan1 11689 | . . . . . . . . . . . 12
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | 
| 143 | 141, 142 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) | 
| 144 |  | nnm1nn0 12569 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) | 
| 145 | 29, 144 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 − 1) ∈
ℕ0) | 
| 146 | 145 | nn0zd 12641 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) | 
| 147 |  | uzid 12894 | . . . . . . . . . . . 12
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) | 
| 148 |  | peano2uz 12944 | . . . . . . . . . . . 12
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) | 
| 149 | 146, 147,
148 | 3syl 18 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) | 
| 150 | 143, 149 | eqeltrrd 2841 | . . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) | 
| 151 |  | fzss2 13605 | . . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁)) | 
| 152 |  | ssralv 4051 | . . . . . . . . . 10
⊢
((0...(𝑁 − 1))
⊆ (0...𝑁) →
(∀𝑖 ∈
(0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 153 | 150, 151,
152 | 3syl 18 | . . . . . . . . 9
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 154 | 153 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 155 |  | raldifb 4148 | . . . . . . . . . . . 12
⊢
(∀𝑗 ∈
(0...𝑁)(𝑗 ∉ {(2nd ‘𝑡)} → ¬ 𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶) ↔ ∀𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 156 |  | nfv 1913 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗𝜑 | 
| 157 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗⦋(2nd ‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 | 
| 158 | 157 | nfeq2 2922 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗 𝑁 =
⦋(2nd ‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 | 
| 159 | 156, 158 | nfan 1898 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 160 |  | nfv 1913 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑗 𝑖 ∈ (0...(𝑁 − 1)) | 
| 161 | 159, 160 | nfan 1898 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑖 ∈ (0...(𝑁 − 1))) | 
| 162 |  | nnel 3055 | . . . . . . . . . . . . . . . . 17
⊢ (¬
𝑗 ∉ {(2nd
‘𝑡)} ↔ 𝑗 ∈ {(2nd
‘𝑡)}) | 
| 163 |  | velsn 4641 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ {(2nd
‘𝑡)} ↔ 𝑗 = (2nd ‘𝑡)) | 
| 164 | 162, 163 | bitri 275 | . . . . . . . . . . . . . . . 16
⊢ (¬
𝑗 ∉ {(2nd
‘𝑡)} ↔ 𝑗 = (2nd ‘𝑡)) | 
| 165 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (2nd ‘𝑡) →
⦋(1st ‘𝑡) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 166 | 165 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (2nd ‘𝑡) → (𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 167 | 166 | biimparc 479 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 =
⦋(2nd ‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ 𝑗 = (2nd ‘𝑡)) → 𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 168 | 29 | nnred 12282 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 169 | 168 | ltm1d 12201 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑁 − 1) < 𝑁) | 
| 170 | 145 | nn0red 12590 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) | 
| 171 | 170, 168 | ltnled 11409 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) | 
| 172 | 169, 171 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) | 
| 173 |  | elfzle2 13569 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ (0...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) | 
| 174 | 172, 173 | nsyl 140 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ¬ 𝑁 ∈ (0...(𝑁 − 1))) | 
| 175 |  | eleq1 2828 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑁 → (𝑖 ∈ (0...(𝑁 − 1)) ↔ 𝑁 ∈ (0...(𝑁 − 1)))) | 
| 176 | 175 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑁 → (¬ 𝑖 ∈ (0...(𝑁 − 1)) ↔ ¬ 𝑁 ∈ (0...(𝑁 − 1)))) | 
| 177 | 174, 176 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑖 = 𝑁 → ¬ 𝑖 ∈ (0...(𝑁 − 1)))) | 
| 178 | 177 | con2d 134 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑖 ∈ (0...(𝑁 − 1)) → ¬ 𝑖 = 𝑁)) | 
| 179 | 178 | imp 406 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑁 − 1))) → ¬ 𝑖 = 𝑁) | 
| 180 |  | eqeq2 2748 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 → (𝑖 = 𝑁 ↔ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 181 | 180 | notbid 318 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 → (¬ 𝑖 = 𝑁 ↔ ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 182 | 179, 181 | syl5ibcom 245 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑁 − 1))) → (𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 183 | 167, 182 | syl5 34 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑁 − 1))) → ((𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ 𝑗 = (2nd ‘𝑡)) → ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 184 | 183 | expdimp 452 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0...(𝑁 − 1))) ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (𝑗 = (2nd ‘𝑡) → ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 185 | 184 | an32s 652 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑖 ∈ (0...(𝑁 − 1))) → (𝑗 = (2nd ‘𝑡) → ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 186 | 164, 185 | biimtrid 242 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑖 ∈ (0...(𝑁 − 1))) → (¬ 𝑗 ∉ {(2nd
‘𝑡)} → ¬
𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶)) | 
| 187 |  | idd 24 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑖 ∈ (0...(𝑁 − 1))) → (¬ 𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 → ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 188 | 186, 187 | jad 187 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑖 ∈ (0...(𝑁 − 1))) → ((𝑗 ∉ {(2nd ‘𝑡)} → ¬ 𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶) → ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 189 | 188 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑖 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑗 ∉ {(2nd ‘𝑡)} → ¬ 𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶) → ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 190 | 161, 189 | ralimdaa 3259 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑖 ∈ (0...(𝑁 − 1))) → (∀𝑗 ∈ (0...𝑁)(𝑗 ∉ {(2nd ‘𝑡)} → ¬ 𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶) → ∀𝑗 ∈ (0...𝑁) ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 191 | 155, 190 | biimtrrid 243 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑖 ∈ (0...(𝑁 − 1))) → (∀𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑗 ∈ (0...𝑁) ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 192 | 191 | con3d 152 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑖 ∈ (0...(𝑁 − 1))) → (¬ ∀𝑗 ∈ (0...𝑁) ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ¬ ∀𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 193 |  | dfrex2 3072 | . . . . . . . . . 10
⊢
(∃𝑗 ∈
(0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ¬ ∀𝑗 ∈ (0...𝑁) ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 194 |  | dfrex2 3072 | . . . . . . . . . 10
⊢
(∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ¬ ∀𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ¬ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 195 | 192, 193,
194 | 3imtr4g 296 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑖 ∈ (0...(𝑁 − 1))) → (∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 196 | 195 | ralimdva 3166 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 197 | 154, 196 | syld 47 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 198 | 197 | expimpd 453 | . . . . . 6
⊢ (𝜑 → ((𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 199 | 198 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → ((𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 200 | 199 | ss2rabdv 4075 | . . . 4
⊢ (𝜑 → {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ⊆ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) | 
| 201 |  | hashssdif 14452 | . . . 4
⊢ (({𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∈ Fin ∧ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ⊆ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) → (♯‘({𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})) = ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}))) | 
| 202 | 140, 200,
201 | sylancr 587 | . . 3
⊢ (𝜑 → (♯‘({𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})) = ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}))) | 
| 203 |  | xp2nd 8048 | . . . . . . . 8
⊢ (𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd ‘𝑡) ∈ (0...𝑁)) | 
| 204 |  | df-ne 2940 | . . . . . . . . . . . 12
⊢ (𝑁 ≠
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ↔ ¬ 𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 205 | 204 | ralbii 3092 | . . . . . . . . . . 11
⊢
(∀𝑗 ∈
(0...𝑁)𝑁 ≠ ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∀𝑗 ∈ (0...𝑁) ¬ 𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 206 |  | ralnex 3071 | . . . . . . . . . . 11
⊢
(∀𝑗 ∈
(0...𝑁) ¬ 𝑁 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ↔ ¬ ∃𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 207 | 205, 206 | bitri 275 | . . . . . . . . . 10
⊢
(∀𝑗 ∈
(0...𝑁)𝑁 ≠ ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ¬ ∃𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 208 | 29 | nnnn0d 12589 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 209 |  | nn0uz 12921 | . . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 = (ℤ≥‘0) | 
| 210 | 208, 209 | eleqtrdi 2850 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) | 
| 211 | 143, 210 | eqeltrd 2840 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘0)) | 
| 212 |  | fzsplit2 13590 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (0...𝑁) = ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) | 
| 213 | 211, 150,
212 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (0...𝑁) = ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) | 
| 214 | 143 | oveq1d 7447 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) | 
| 215 | 29 | nnzd 12642 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 216 |  | fzsn 13607 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) | 
| 217 | 215, 216 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) | 
| 218 | 214, 217 | eqtrd 2776 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) | 
| 219 | 218 | uneq2d 4167 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((0...(𝑁 − 1)) ∪ {𝑁})) | 
| 220 | 213, 219 | eqtrd 2776 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (0...𝑁) = ((0...(𝑁 − 1)) ∪ {𝑁})) | 
| 221 | 220 | raleqdv 3325 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ ((0...(𝑁 − 1)) ∪ {𝑁})∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 222 |  | ralunb 4196 | . . . . . . . . . . . . . . 15
⊢
(∀𝑖 ∈
((0...(𝑁 − 1)) ∪
{𝑁})∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ {𝑁}∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 223 |  | difss 4135 | . . . . . . . . . . . . . . . . . 18
⊢
((0...𝑁) ∖
{(2nd ‘𝑡)}) ⊆ (0...𝑁) | 
| 224 |  | ssrexv 4052 | . . . . . . . . . . . . . . . . . 18
⊢
(((0...𝑁) ∖
{(2nd ‘𝑡)}) ⊆ (0...𝑁) → (∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 225 | 223, 224 | ax-mp 5 | . . . . . . . . . . . . . . . . 17
⊢
(∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 226 | 225 | ralimi 3082 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 227 | 226 | biantrurd 532 | . . . . . . . . . . . . . . 15
⊢
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → (∀𝑖 ∈ {𝑁}∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ {𝑁}∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))) | 
| 228 | 222, 227 | bitr4id 290 | . . . . . . . . . . . . . 14
⊢
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → (∀𝑖 ∈ ((0...(𝑁 − 1)) ∪ {𝑁})∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ {𝑁}∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 229 | 221, 228 | sylan9bb 509 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ {𝑁}∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 230 | 229 | adantlr 715 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ {𝑁}∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 231 |  | nn0fz0 13666 | . . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈ (0...𝑁)) | 
| 232 | 208, 231 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) | 
| 233 | 232 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → 𝑁 ∈ (0...𝑁)) | 
| 234 |  | eqeq1 2740 | . . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑁 → (𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 235 | 234 | rexbidv 3178 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑁 → (∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 236 | 235 | rspcva 3619 | . . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → ∃𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 237 |  | nfv 1913 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗(𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) | 
| 238 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗(0...(𝑁 − 1)) | 
| 239 |  | nfre1 3284 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 | 
| 240 | 238, 239 | nfralw 3310 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 | 
| 241 | 237, 240 | nfan 1898 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 242 |  | eleq1 2828 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 → (𝑁 ∈ (0...(𝑁 − 1)) ↔
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)))) | 
| 243 | 242 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 → (¬ 𝑁 ∈ (0...(𝑁 − 1)) ↔ ¬
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)))) | 
| 244 | 174, 243 | syl5ibcom 245 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ¬ ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)))) | 
| 245 | 244 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑗 ∈ (0...𝑁)) → (𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ¬ ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)))) | 
| 246 |  | eldifsn 4785 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ↔ (𝑗 ∈ (0...𝑁) ∧ 𝑗 ≠ (2nd ‘𝑡))) | 
| 247 |  | diffi 9216 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((0...𝑁) ∈ Fin
→ ((0...𝑁) ∖
{(2nd ‘𝑡)}) ∈ Fin) | 
| 248 | 20, 247 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((0...𝑁) ∖
{(2nd ‘𝑡)}) ∈ Fin | 
| 249 |  | ssrab2 4079 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ⊆ ((0...𝑁) ∖ {(2nd
‘𝑡)}) | 
| 250 |  | ssdomg 9041 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((0...𝑁) ∖
{(2nd ‘𝑡)}) ∈ Fin → ({𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ⊆ ((0...𝑁) ∖ {(2nd
‘𝑡)}) → {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ≼ ((0...𝑁) ∖ {(2nd
‘𝑡)}))) | 
| 251 | 248, 249,
250 | mp2 9 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ≼ ((0...𝑁) ∖ {(2nd
‘𝑡)}) | 
| 252 |  | hashdifsn 14454 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((0...𝑁) ∈ Fin
∧ (2nd ‘𝑡) ∈ (0...𝑁)) → (♯‘((0...𝑁) ∖ {(2nd
‘𝑡)})) =
((♯‘(0...𝑁))
− 1)) | 
| 253 | 20, 252 | mpan 690 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((2nd ‘𝑡) ∈ (0...𝑁) → (♯‘((0...𝑁) ∖ {(2nd
‘𝑡)})) =
((♯‘(0...𝑁))
− 1)) | 
| 254 |  | 1cnd 11257 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → 1 ∈
ℂ) | 
| 255 | 141, 254,
254 | addsubd 11642 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → ((𝑁 + 1) − 1) = ((𝑁 − 1) + 1)) | 
| 256 |  | hashfz0 14472 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑁 ∈ ℕ0
→ (♯‘(0...𝑁)) = (𝑁 + 1)) | 
| 257 | 208, 256 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (♯‘(0...𝑁)) = (𝑁 + 1)) | 
| 258 | 257 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → ((♯‘(0...𝑁)) − 1) = ((𝑁 + 1) −
1)) | 
| 259 |  | hashfz0 14472 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑁 − 1) ∈
ℕ0 → (♯‘(0...(𝑁 − 1))) = ((𝑁 − 1) + 1)) | 
| 260 | 145, 259 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (♯‘(0...(𝑁 − 1))) = ((𝑁 − 1) +
1)) | 
| 261 | 255, 258,
260 | 3eqtr4d 2786 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → ((♯‘(0...𝑁)) − 1) =
(♯‘(0...(𝑁
− 1)))) | 
| 262 | 253, 261 | sylan9eqr 2798 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) →
(♯‘((0...𝑁)
∖ {(2nd ‘𝑡)})) = (♯‘(0...(𝑁 − 1)))) | 
| 263 |  | fzfi 14014 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(0...(𝑁 − 1))
∈ Fin | 
| 264 |  | hashen 14387 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((0...𝑁) ∖
{(2nd ‘𝑡)}) ∈ Fin ∧ (0...(𝑁 − 1)) ∈ Fin) →
((♯‘((0...𝑁)
∖ {(2nd ‘𝑡)})) = (♯‘(0...(𝑁 − 1))) ↔ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ≈ (0...(𝑁 − 1)))) | 
| 265 | 248, 263,
264 | mp2an 692 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((♯‘((0...𝑁) ∖ {(2nd ‘𝑡)})) =
(♯‘(0...(𝑁
− 1))) ↔ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ≈ (0...(𝑁 − 1))) | 
| 266 | 262, 265 | sylib 218 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) → ((0...𝑁) ∖ {(2nd
‘𝑡)}) ≈
(0...(𝑁 −
1))) | 
| 267 |  | rabfi 9304 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((0...𝑁) ∖
{(2nd ‘𝑡)}) ∈ Fin → {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∈ Fin) | 
| 268 | 248, 267 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∈ Fin | 
| 269 |  | eleq1 2828 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 → (𝑖 ∈ (0...(𝑁 − 1)) ↔
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)))) | 
| 270 | 269 | biimpac 478 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑖 ∈ (0...(𝑁 − 1)) ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) | 
| 271 |  | rabid 3457 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↔ (𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∧
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)))) | 
| 272 | 271 | simplbi2com 502 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) → (𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) → 𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))})) | 
| 273 | 270, 272 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑖 ∈ (0...(𝑁 − 1)) ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) → 𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))})) | 
| 274 | 273 | impancom 451 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑖 ∈ (0...(𝑁 − 1)) ∧ 𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})) → (𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → 𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))})) | 
| 275 | 274 | ancrd 551 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑖 ∈ (0...(𝑁 − 1)) ∧ 𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})) → (𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))) | 
| 276 | 275 | expimpd 453 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑖 ∈ (0...(𝑁 − 1)) → ((𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))) | 
| 277 | 276 | reximdv2 3163 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑖 ∈ (0...(𝑁 − 1)) → (∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∃𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 278 | 271 | simplbi 497 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} → 𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})) | 
| 279 | 274 | pm4.71rd 562 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑖 ∈ (0...(𝑁 − 1)) ∧ 𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})) → (𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))) | 
| 280 |  | df-mpt 5225 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) = {〈𝑘, 𝑖〉 ∣ (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)} | 
| 281 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
Ⅎ𝑘(𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 282 |  | nfrab1 3456 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢
Ⅎ𝑗{𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} | 
| 283 | 282 | nfcri 2896 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢
Ⅎ𝑗 𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} | 
| 284 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢
Ⅎ𝑗⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 | 
| 285 | 284 | nfeq2 2922 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢
Ⅎ𝑗 𝑖 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 | 
| 286 | 283, 285 | nfan 1898 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
Ⅎ𝑗(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 287 |  | eleq1 2828 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑗 = 𝑘 → (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↔ 𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))})) | 
| 288 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (𝑗 = 𝑘 → ⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 289 | 288 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑗 = 𝑘 → (𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 290 | 287, 289 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑗 = 𝑘 → ((𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ↔ (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶))) | 
| 291 | 281, 286,
290 | cbvopab1 5216 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
{〈𝑗, 𝑖〉 ∣ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} = {〈𝑘, 𝑖〉 ∣ (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)} | 
| 292 | 280, 291 | eqtr4i 2767 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) = {〈𝑗, 𝑖〉 ∣ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} | 
| 293 | 292 | breqi 5148 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑗(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖 ↔ 𝑗{〈𝑗, 𝑖〉 ∣ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}𝑖) | 
| 294 |  | df-br 5143 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑗{〈𝑗, 𝑖〉 ∣ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}𝑖 ↔ 〈𝑗, 𝑖〉 ∈ {〈𝑗, 𝑖〉 ∣ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) | 
| 295 |  | opabidw 5528 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(〈𝑗, 𝑖〉 ∈ {〈𝑗, 𝑖〉 ∣ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ↔ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 296 | 293, 294,
295 | 3bitri 297 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑗(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖 ↔ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∧ 𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 297 | 279, 296 | bitr4di 289 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑖 ∈ (0...(𝑁 − 1)) ∧ 𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})) → (𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑗(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖)) | 
| 298 | 278, 297 | sylan2 593 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑖 ∈ (0...(𝑁 − 1)) ∧ 𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}) → (𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑗(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖)) | 
| 299 | 298 | rexbidva 3176 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑖 ∈ (0...(𝑁 − 1)) → (∃𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}𝑗(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖)) | 
| 300 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
Ⅎ𝑝{𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} | 
| 301 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
Ⅎ𝑝 𝑗(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖 | 
| 302 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
Ⅎ𝑗𝑝 | 
| 303 | 282, 284 | nfmpt 5248 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
Ⅎ𝑗(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 304 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
Ⅎ𝑗𝑖 | 
| 305 | 302, 303,
304 | nfbr 5189 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
Ⅎ𝑗 𝑝(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖 | 
| 306 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑗 = 𝑝 → (𝑗(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖 ↔ 𝑝(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖)) | 
| 307 | 282, 300,
301, 305, 306 | cbvrexfw 3304 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(∃𝑗 ∈
{𝑗 ∈ ((0...𝑁) ∖ {(2nd
‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}𝑗(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖 ↔ ∃𝑝 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}𝑝(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖) | 
| 308 | 299, 307 | bitrdi 287 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑖 ∈ (0...(𝑁 − 1)) → (∃𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑝 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}𝑝(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖)) | 
| 309 | 277, 308 | sylibd 239 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑖 ∈ (0...(𝑁 − 1)) → (∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∃𝑝 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}𝑝(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖)) | 
| 310 | 309 | ralimia 3079 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑝 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}𝑝(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖) | 
| 311 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) = (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 312 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
Ⅎ𝑗𝑘 | 
| 313 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
Ⅎ𝑗((0...𝑁) ∖ {(2nd ‘𝑡)}) | 
| 314 | 284 | nfel1 2921 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
Ⅎ𝑗⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) | 
| 315 | 288 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 = 𝑘 → (⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ↔ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)))) | 
| 316 | 312, 313,
314, 315 | elrabf 3687 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↔ (𝑘 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∧ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)))) | 
| 317 | 316 | simprbi 496 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} → ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) | 
| 318 | 311, 317 | fmpti 7131 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶):{𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}⟶(0...(𝑁 − 1)) | 
| 319 | 310, 318 | jctil 519 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → ((𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶):{𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}⟶(0...(𝑁 − 1)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑝 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}𝑝(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖)) | 
| 320 |  | dffo4 7122 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶):{𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}–onto→(0...(𝑁 − 1)) ↔ ((𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶):{𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}⟶(0...(𝑁 − 1)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑝 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}𝑝(𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)𝑖)) | 
| 321 | 319, 320 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶):{𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}–onto→(0...(𝑁 − 1))) | 
| 322 |  | fodomfi 9351 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (({𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ∈ Fin ∧ (𝑘 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↦ ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶):{𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}–onto→(0...(𝑁 − 1))) → (0...(𝑁 − 1)) ≼ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}) | 
| 323 | 268, 321,
322 | sylancr 587 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → (0...(𝑁 − 1)) ≼ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}) | 
| 324 |  | endomtr 9053 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((0...𝑁) ∖
{(2nd ‘𝑡)}) ≈ (0...(𝑁 − 1)) ∧ (0...(𝑁 − 1)) ≼ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}) → ((0...𝑁) ∖ {(2nd
‘𝑡)}) ≼ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}) | 
| 325 | 266, 323,
324 | syl2an 596 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → ((0...𝑁) ∖ {(2nd ‘𝑡)}) ≼ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}) | 
| 326 |  | sbth 9134 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (({𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ≼ ((0...𝑁) ∖ {(2nd
‘𝑡)}) ∧
((0...𝑁) ∖
{(2nd ‘𝑡)}) ≼ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}) → {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ≈ ((0...𝑁) ∖ {(2nd
‘𝑡)})) | 
| 327 | 251, 325,
326 | sylancr 587 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ≈ ((0...𝑁) ∖ {(2nd
‘𝑡)})) | 
| 328 |  | fisseneq 9294 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((0...𝑁) ∖
{(2nd ‘𝑡)}) ∈ Fin ∧ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ⊆ ((0...𝑁) ∖ {(2nd
‘𝑡)}) ∧ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ≈ ((0...𝑁) ∖ {(2nd
‘𝑡)})) → {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} = ((0...𝑁) ∖ {(2nd ‘𝑡)})) | 
| 329 | 248, 249,
327, 328 | mp3an12i 1466 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} = ((0...𝑁) ∖ {(2nd ‘𝑡)})) | 
| 330 | 329 | eleq2d 2826 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} ↔ 𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}))) | 
| 331 | 330 | biimpar 477 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})) → 𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))}) | 
| 332 | 288 | equcoms 2018 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝑗 → ⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 333 | 332 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 = 𝑗 → ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 334 | 333 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 𝑗 → (⦋𝑘 / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ↔
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)))) | 
| 335 | 334, 317 | vtoclga 3576 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ {𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)}) ∣
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))} →
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) | 
| 336 | 331, 335 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})) →
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) | 
| 337 | 246, 336 | sylan2br 595 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑗 ≠ (2nd ‘𝑡))) →
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) | 
| 338 | 337 | expr 456 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑗 ∈ (0...𝑁)) → (𝑗 ≠ (2nd ‘𝑡) →
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)))) | 
| 339 | 338 | necon1bd 2957 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑗 ∈ (0...𝑁)) → (¬
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) → 𝑗 = (2nd ‘𝑡))) | 
| 340 | 245, 339 | syld 47 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑗 ∈ (0...𝑁)) → (𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → 𝑗 = (2nd ‘𝑡))) | 
| 341 | 340 | imp 406 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧
(2nd ‘𝑡)
∈ (0...𝑁)) ∧
∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → 𝑗 = (2nd ‘𝑡)) | 
| 342 | 341, 165 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
(2nd ‘𝑡)
∈ (0...𝑁)) ∧
∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → ⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 343 |  | eqtr 2759 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 ∧ ⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) → 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 344 | 343 | ex 412 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 → (⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 → 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 345 | 344 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
(2nd ‘𝑡)
∈ (0...𝑁)) ∧
∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 → 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 346 | 342, 345 | mpd 15 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
(2nd ‘𝑡)
∈ (0...𝑁)) ∧
∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖
{(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 347 | 346 | exp31 419 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (𝑗 ∈ (0...𝑁) → (𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶))) | 
| 348 | 241, 158,
347 | rexlimd 3265 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (∃𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 349 | 236, 348 | syl5 34 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → ((𝑁 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 350 | 233, 349 | mpand 695 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 → 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 351 | 350 | pm4.71rd 562 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))) | 
| 352 | 235 | ralsng 4674 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ →
(∀𝑖 ∈ {𝑁}∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 353 | 29, 352 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → (∀𝑖 ∈ {𝑁}∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 354 | 353 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (∀𝑖 ∈ {𝑁}∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 355 | 230, 351,
354 | 3bitr3rd 310 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (∃𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))) | 
| 356 | 355 | notbid 318 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (¬ ∃𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ¬ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))) | 
| 357 | 207, 356 | bitrid 283 | . . . . . . . . 9
⊢ (((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → (∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ¬ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))) | 
| 358 | 357 | pm5.32da 579 | . . . . . . . 8
⊢ ((𝜑 ∧ (2nd
‘𝑡) ∈ (0...𝑁)) → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)))) | 
| 359 | 203, 358 | sylan2 593 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)))) | 
| 360 | 359 | rabbidva 3442 | . . . . . 6
⊢ (𝜑 → {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))}) | 
| 361 |  | nfv 1913 | . . . . . . . . . . . 12
⊢
Ⅎ𝑦 𝑡 = 〈𝑥, 𝑘〉 | 
| 362 |  | nfv 1913 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑦 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) | 
| 363 |  | nfrab1 3456 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑦{𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} | 
| 364 | 363 | nfcri 2896 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑦 𝑘 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} | 
| 365 | 362, 364 | nfan 1898 | . . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑘 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) | 
| 366 | 361, 365 | nfan 1898 | . . . . . . . . . . 11
⊢
Ⅎ𝑦(𝑡 = 〈𝑥, 𝑘〉 ∧ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑘 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) | 
| 367 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑡 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶))) | 
| 368 |  | opeq2 4873 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑦 → 〈𝑥, 𝑘〉 = 〈𝑥, 𝑦〉) | 
| 369 | 368 | eqeq2d 2747 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑦 → (𝑡 = 〈𝑥, 𝑘〉 ↔ 𝑡 = 〈𝑥, 𝑦〉)) | 
| 370 |  | eleq1 2828 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑦 → (𝑘 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ↔ 𝑦 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) | 
| 371 |  | rabid 3457 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ↔ (𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶))) | 
| 372 | 370, 371 | bitrdi 287 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑦 → (𝑘 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ↔ (𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)))) | 
| 373 | 372 | anbi2d 630 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑦 → ((𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑘 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ↔ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶))))) | 
| 374 |  | 3anass 1094 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)) ↔ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)))) | 
| 375 | 373, 374 | bitr4di 289 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑦 → ((𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑘 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ↔ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)))) | 
| 376 | 369, 375 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑦 → ((𝑡 = 〈𝑥, 𝑘〉 ∧ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑘 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) ↔ (𝑡 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶))))) | 
| 377 | 366, 367,
376 | cbvexv1 2343 | . . . . . . . . . 10
⊢
(∃𝑘(𝑡 = 〈𝑥, 𝑘〉 ∧ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑘 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) ↔ ∃𝑦(𝑡 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)))) | 
| 378 | 377 | exbii 1847 | . . . . . . . . 9
⊢
(∃𝑥∃𝑘(𝑡 = 〈𝑥, 𝑘〉 ∧ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑘 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) ↔ ∃𝑥∃𝑦(𝑡 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)))) | 
| 379 |  | eliunxp 5847 | . . . . . . . . 9
⊢ (𝑡 ∈ ∪ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ↔ ∃𝑥∃𝑘(𝑡 = 〈𝑥, 𝑘〉 ∧ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑘 ∈ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}))) | 
| 380 |  | elopab 5531 | . . . . . . . . 9
⊢ (𝑡 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶))} ↔ ∃𝑥∃𝑦(𝑡 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)))) | 
| 381 | 378, 379,
380 | 3bitr4i 303 | . . . . . . . 8
⊢ (𝑡 ∈ ∪ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ↔ 𝑡 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶))}) | 
| 382 | 381 | eqriv 2733 | . . . . . . 7
⊢ ∪ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶))} | 
| 383 |  | vex 3483 | . . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V | 
| 384 | 125, 383 | op2ndd 8026 | . . . . . . . . . . . . 13
⊢ (𝑡 = 〈𝑥, 𝑦〉 → (2nd ‘𝑡) = 𝑦) | 
| 385 | 384 | sneqd 4637 | . . . . . . . . . . . 12
⊢ (𝑡 = 〈𝑥, 𝑦〉 → {(2nd ‘𝑡)} = {𝑦}) | 
| 386 | 385 | difeq2d 4125 | . . . . . . . . . . 11
⊢ (𝑡 = 〈𝑥, 𝑦〉 → ((0...𝑁) ∖ {(2nd ‘𝑡)}) = ((0...𝑁) ∖ {𝑦})) | 
| 387 | 125, 383 | op1std 8025 | . . . . . . . . . . . . 13
⊢ (𝑡 = 〈𝑥, 𝑦〉 → (1st ‘𝑡) = 𝑥) | 
| 388 | 387 | csbeq1d 3902 | . . . . . . . . . . . 12
⊢ (𝑡 = 〈𝑥, 𝑦〉 → ⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋𝑥 / 𝑠⦌𝐶) | 
| 389 | 388 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ (𝑡 = 〈𝑥, 𝑦〉 → (𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑥 / 𝑠⦌𝐶)) | 
| 390 | 386, 389 | rexeqbidv 3346 | . . . . . . . . . 10
⊢ (𝑡 = 〈𝑥, 𝑦〉 → (∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶)) | 
| 391 | 390 | ralbidv 3177 | . . . . . . . . 9
⊢ (𝑡 = 〈𝑥, 𝑦〉 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶)) | 
| 392 | 388 | neeq2d 3000 | . . . . . . . . . 10
⊢ (𝑡 = 〈𝑥, 𝑦〉 → (𝑁 ≠ ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)) | 
| 393 | 392 | ralbidv 3177 | . . . . . . . . 9
⊢ (𝑡 = 〈𝑥, 𝑦〉 → (∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)) | 
| 394 | 391, 393 | anbi12d 632 | . . . . . . . 8
⊢ (𝑡 = 〈𝑥, 𝑦〉 → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶))) | 
| 395 | 394 | rabxp 5732 | . . . . . . 7
⊢ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑦 ∈ (0...𝑁) ∧ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶))} | 
| 396 | 382, 395 | eqtr4i 2767 | . . . . . 6
⊢ ∪ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} | 
| 397 |  | difrab 4317 | . . . . . 6
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ¬ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶))} | 
| 398 | 360, 396,
397 | 3eqtr4g 2801 | . . . . 5
⊢ (𝜑 → ∪ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) = ({𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})) | 
| 399 | 398 | fveq2d 6909 | . . . 4
⊢ (𝜑 → (♯‘∪ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) = (♯‘({𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}))) | 
| 400 | 24 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → ({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∈ Fin) | 
| 401 |  | inxp 5841 | . . . . . . . . . 10
⊢ (({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∩ ({𝑡} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)})) = (({𝑥} ∩ {𝑡}) × ({𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ∩ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)})) | 
| 402 |  | df-ne 2940 | . . . . . . . . . . . . 13
⊢ (𝑥 ≠ 𝑡 ↔ ¬ 𝑥 = 𝑡) | 
| 403 |  | disjsn2 4711 | . . . . . . . . . . . . 13
⊢ (𝑥 ≠ 𝑡 → ({𝑥} ∩ {𝑡}) = ∅) | 
| 404 | 402, 403 | sylbir 235 | . . . . . . . . . . . 12
⊢ (¬
𝑥 = 𝑡 → ({𝑥} ∩ {𝑡}) = ∅) | 
| 405 | 404 | xpeq1d 5713 | . . . . . . . . . . 11
⊢ (¬
𝑥 = 𝑡 → (({𝑥} ∩ {𝑡}) × ({𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ∩ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)})) = (∅ × ({𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ∩ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)}))) | 
| 406 |  | 0xp 5783 | . . . . . . . . . . 11
⊢ (∅
× ({𝑦 ∈
(0...𝑁) ∣
(∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ∩ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)})) = ∅ | 
| 407 | 405, 406 | eqtrdi 2792 | . . . . . . . . . 10
⊢ (¬
𝑥 = 𝑡 → (({𝑥} ∩ {𝑡}) × ({𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} ∩ {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)})) = ∅) | 
| 408 | 401, 407 | eqtrid 2788 | . . . . . . . . 9
⊢ (¬
𝑥 = 𝑡 → (({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∩ ({𝑡} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)})) = ∅) | 
| 409 | 408 | orri 862 | . . . . . . . 8
⊢ (𝑥 = 𝑡 ∨ (({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∩ ({𝑡} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)})) = ∅) | 
| 410 | 409 | rgen2w 3065 | . . . . . . 7
⊢
∀𝑥 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑡 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(𝑥 = 𝑡 ∨ (({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∩ ({𝑡} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)})) = ∅) | 
| 411 |  | sneq 4635 | . . . . . . . . 9
⊢ (𝑥 = 𝑡 → {𝑥} = {𝑡}) | 
| 412 |  | csbeq1 3901 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑡 → ⦋𝑥 / 𝑠⦌𝐶 = ⦋𝑡 / 𝑠⦌𝐶) | 
| 413 | 412 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑡 → (𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑡 / 𝑠⦌𝐶)) | 
| 414 | 413 | rexbidv 3178 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶)) | 
| 415 | 414 | ralbidv 3177 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶)) | 
| 416 | 412 | neeq2d 3000 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 ↔ 𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)) | 
| 417 | 416 | ralbidv 3177 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶 ↔ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)) | 
| 418 | 415, 417 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑥 = 𝑡 → ((∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶) ↔ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶))) | 
| 419 | 418 | rabbidv 3443 | . . . . . . . . 9
⊢ (𝑥 = 𝑡 → {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)} = {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)}) | 
| 420 | 411, 419 | xpeq12d 5715 | . . . . . . . 8
⊢ (𝑥 = 𝑡 → ({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) = ({𝑡} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)})) | 
| 421 | 420 | disjor 5124 | . . . . . . 7
⊢
(Disj 𝑥
∈ (((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ↔ ∀𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑡 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(𝑥 = 𝑡 ∨ (({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) ∩ ({𝑡} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑡 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑡 / 𝑠⦌𝐶)})) = ∅)) | 
| 422 | 410, 421 | mpbir 231 | . . . . . 6
⊢
Disj 𝑥 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}) | 
| 423 | 422 | a1i 11 | . . . . 5
⊢ (𝜑 → Disj 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) | 
| 424 | 16, 400, 423 | hashiun 15859 | . . . 4
⊢ (𝜑 → (♯‘∪ 𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) = Σ𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(♯‘({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}))) | 
| 425 | 399, 424 | eqtr3d 2778 | . . 3
⊢ (𝜑 → (♯‘({𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶} ∖ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})) = Σ𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(♯‘({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)}))) | 
| 426 |  | fo1st 8035 | . . . . . . . . . . . 12
⊢
1st :V–onto→V | 
| 427 |  | fofun 6820 | . . . . . . . . . . . 12
⊢
(1st :V–onto→V → Fun 1st ) | 
| 428 | 426, 427 | ax-mp 5 | . . . . . . . . . . 11
⊢ Fun
1st | 
| 429 |  | ssv 4007 | . . . . . . . . . . . 12
⊢ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ⊆ V | 
| 430 |  | fof 6819 | . . . . . . . . . . . . . 14
⊢
(1st :V–onto→V → 1st
:V⟶V) | 
| 431 | 426, 430 | ax-mp 5 | . . . . . . . . . . . . 13
⊢
1st :V⟶V | 
| 432 | 431 | fdmi 6746 | . . . . . . . . . . . 12
⊢ dom
1st = V | 
| 433 | 429, 432 | sseqtrri 4032 | . . . . . . . . . . 11
⊢ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ⊆ dom
1st | 
| 434 |  | fores 6829 | . . . . . . . . . . 11
⊢ ((Fun
1st ∧ {𝑡
∈ ((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ⊆ dom 1st ) →
(1st ↾ {𝑡
∈ ((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–onto→(1st “ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})) | 
| 435 | 428, 433,
434 | mp2an 692 | . . . . . . . . . 10
⊢
(1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–onto→(1st “ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) | 
| 436 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑥 → (2nd ‘𝑡) = (2nd ‘𝑥)) | 
| 437 | 436 | csbeq1d 3902 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑥 → ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 438 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑥 → (1st ‘𝑡) = (1st ‘𝑥)) | 
| 439 | 438 | csbeq1d 3902 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑥 → ⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 440 | 439 | csbeq2dv 3905 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑥 → ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 441 | 437, 440 | eqtrd 2776 | . . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑥 → ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 442 | 441 | eqeq2d 2747 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑥 → (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 443 | 439 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑥 → (𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 444 | 443 | rexbidv 3178 | . . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑥 → (∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 445 | 444 | ralbidv 3177 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑥 → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 446 | 442, 445 | anbi12d 632 | . . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑥 → ((𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) ↔ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶))) | 
| 447 | 446 | rexrab 3701 | . . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑠 ↔ ∃𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ (1st ‘𝑥) = 𝑠)) | 
| 448 |  | xp1st 8047 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑥) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) | 
| 449 | 448 | anim1i 615 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → ((1st ‘𝑥) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 450 |  | eleq1 2828 | . . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑥) = 𝑠 → ((1st ‘𝑥) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ↔ 𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))) | 
| 451 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑠 = (1st ‘𝑥) → 𝐶 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 452 | 451 | eqcoms 2744 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1st ‘𝑥) = 𝑠 → 𝐶 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 453 | 452 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1st ‘𝑥) = 𝑠 → ⦋(1st
‘𝑥) / 𝑠⦌𝐶 = 𝐶) | 
| 454 | 453 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘𝑥) = 𝑠 → (𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ 𝑖 = 𝐶)) | 
| 455 | 454 | rexbidv 3178 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((1st ‘𝑥) = 𝑠 → (∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)) | 
| 456 | 455 | ralbidv 3177 | . . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑥) = 𝑠 → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)) | 
| 457 | 450, 456 | anbi12d 632 | . . . . . . . . . . . . . . . . . . 19
⊢
((1st ‘𝑥) = 𝑠 → (((1st ‘𝑥) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ↔ (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶))) | 
| 458 | 449, 457 | syl5ibcom 245 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → ((1st ‘𝑥) = 𝑠 → (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶))) | 
| 459 | 458 | adantrl 716 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) → ((1st ‘𝑥) = 𝑠 → (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶))) | 
| 460 | 459 | expimpd 453 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ (1st ‘𝑥) = 𝑠) → (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶))) | 
| 461 | 460 | rexlimiv 3147 | . . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ (1st ‘𝑥) = 𝑠) → (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)) | 
| 462 |  | simplr 768 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → 𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) | 
| 463 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(0...𝑁) ∈
V | 
| 464 | 463 | enref 9026 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(0...𝑁) ≈
(0...𝑁) | 
| 465 |  | phpreu 37612 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((0...𝑁) ∈ Fin
∧ (0...𝑁) ≈
(0...𝑁)) →
(∀𝑖 ∈
(0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶 ↔ ∀𝑖 ∈ (0...𝑁)∃!𝑗 ∈ (0...𝑁)𝑖 = 𝐶)) | 
| 466 | 20, 464, 465 | mp2an 692 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑖 ∈
(0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶 ↔ ∀𝑖 ∈ (0...𝑁)∃!𝑗 ∈ (0...𝑁)𝑖 = 𝐶) | 
| 467 | 466 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑖 ∈
(0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶 → ∀𝑖 ∈ (0...𝑁)∃!𝑗 ∈ (0...𝑁)𝑖 = 𝐶) | 
| 468 |  | eqeq1 2740 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑁 → (𝑖 = 𝐶 ↔ 𝑁 = 𝐶)) | 
| 469 | 468 | reubidv 3397 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑁 → (∃!𝑗 ∈ (0...𝑁)𝑖 = 𝐶 ↔ ∃!𝑗 ∈ (0...𝑁)𝑁 = 𝐶)) | 
| 470 | 469 | rspcva 3619 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑁)∃!𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → ∃!𝑗 ∈ (0...𝑁)𝑁 = 𝐶) | 
| 471 | 232, 467,
470 | syl2an 596 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → ∃!𝑗 ∈ (0...𝑁)𝑁 = 𝐶) | 
| 472 |  | riotacl 7406 | . . . . . . . . . . . . . . . . . . . 20
⊢
(∃!𝑗 ∈
(0...𝑁)𝑁 = 𝐶 → (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) ∈ (0...𝑁)) | 
| 473 | 471, 472 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) ∈ (0...𝑁)) | 
| 474 | 473 | adantlr 715 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) ∈ (0...𝑁)) | 
| 475 |  | opelxpi 5721 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) ∈ (0...𝑁)) → 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) | 
| 476 | 462, 474,
475 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) | 
| 477 |  | riotasbc 7407 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃!𝑗 ∈
(0...𝑁)𝑁 = 𝐶 → [(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗]𝑁 = 𝐶) | 
| 478 | 471, 477 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → [(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗]𝑁 = 𝐶) | 
| 479 |  | riotaex 7393 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(℩𝑗
∈ (0...𝑁)𝑁 = 𝐶) ∈ V | 
| 480 |  | sbceq2g 4418 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((℩𝑗
∈ (0...𝑁)𝑁 = 𝐶) ∈ V →
([(℩𝑗
∈ (0...𝑁)𝑁 = 𝐶) / 𝑗]𝑁 = 𝐶 ↔ 𝑁 = ⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶)) | 
| 481 | 479, 480 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . 21
⊢
([(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗]𝑁 = 𝐶 ↔ 𝑁 = ⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶) | 
| 482 | 478, 481 | sylib 218 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → 𝑁 = ⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶) | 
| 483 | 482 | expcom 413 | . . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑖 ∈
(0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶 → (𝜑 → 𝑁 = ⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶)) | 
| 484 | 483 | imdistanri 569 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → (𝑁 = ⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)) | 
| 485 | 484 | adantlr 715 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → (𝑁 = ⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)) | 
| 486 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑠 ∈ V | 
| 487 | 486, 479 | op2ndd 8026 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 → (2nd ‘𝑥) = (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)) | 
| 488 | 487 | csbeq1d 3902 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 →
⦋(2nd ‘𝑥) / 𝑗⦌𝐶 = ⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶) | 
| 489 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑗𝑠 | 
| 490 |  | nfriota1 7396 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑗(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) | 
| 491 | 489, 490 | nfop 4888 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑗〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 | 
| 492 | 491 | nfeq2 2922 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑗 𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 | 
| 493 | 486, 479 | op1std 8025 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 → (1st ‘𝑥) = 𝑠) | 
| 494 | 493 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 → 𝑠 = (1st ‘𝑥)) | 
| 495 | 494, 451 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 → 𝐶 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 496 | 492, 495 | csbeq2d 3904 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 →
⦋(2nd ‘𝑥) / 𝑗⦌𝐶 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 497 | 488, 496 | eqtr3d 2778 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 →
⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 498 | 497 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 → (𝑁 = ⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶 ↔ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 499 | 495 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 → (𝑖 = 𝐶 ↔ 𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 500 | 492, 499 | rexbid 3273 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 → (∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶 ↔ ∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 501 | 500 | ralbidv 3177 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶 ↔ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 502 | 498, 501 | anbi12d 632 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 → ((𝑁 = ⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) ↔ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶))) | 
| 503 | 493 | biantrud 531 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 → ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ↔ ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ (1st ‘𝑥) = 𝑠))) | 
| 504 | 502, 503 | bitr2d 280 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 〈𝑠, (℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶)〉 → (((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ (1st ‘𝑥) = 𝑠) ↔ (𝑁 = ⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶))) | 
| 505 | 504 | rspcev 3621 | . . . . . . . . . . . . . . . . 17
⊢
((〈𝑠,
(℩𝑗 ∈
(0...𝑁)𝑁 = 𝐶)〉 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (𝑁 = ⦋(℩𝑗 ∈ (0...𝑁)𝑁 = 𝐶) / 𝑗⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)) → ∃𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ (1st ‘𝑥) = 𝑠)) | 
| 506 | 476, 485,
505 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → ∃𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ (1st ‘𝑥) = 𝑠)) | 
| 507 | 506 | expl 457 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) → ∃𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ (1st ‘𝑥) = 𝑠))) | 
| 508 | 461, 507 | impbid2 226 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (∃𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ (1st ‘𝑥) = 𝑠) ↔ (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶))) | 
| 509 | 447, 508 | bitrid 283 | . . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑠 ↔ (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶))) | 
| 510 | 509 | abbidv 2807 | . . . . . . . . . . . 12
⊢ (𝜑 → {𝑠 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑠} = {𝑠 ∣ (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)}) | 
| 511 |  | dfimafn 6970 | . . . . . . . . . . . . . 14
⊢ ((Fun
1st ∧ {𝑡
∈ ((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ⊆ dom 1st ) →
(1st “ {𝑡
∈ ((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) = {𝑦 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑦}) | 
| 512 | 428, 433,
511 | mp2an 692 | . . . . . . . . . . . . 13
⊢
(1st “ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) = {𝑦 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑦} | 
| 513 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑠(2nd ‘𝑡) | 
| 514 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑠⦋(1st ‘𝑡) / 𝑠⦌𝐶 | 
| 515 | 513, 514 | nfcsbw 3924 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑠⦋(2nd ‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 | 
| 516 | 515 | nfeq2 2922 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑠 𝑁 =
⦋(2nd ‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 | 
| 517 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑠(0...𝑁) | 
| 518 | 514 | nfeq2 2922 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑠 𝑖 =
⦋(1st ‘𝑡) / 𝑠⦌𝐶 | 
| 519 | 517, 518 | nfrexw 3312 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑠∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 | 
| 520 | 517, 519 | nfralw 3310 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑠∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶 | 
| 521 | 516, 520 | nfan 1898 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑠(𝑁 =
⦋(2nd ‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 522 |  | nfcv 2904 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑠((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) | 
| 523 | 521, 522 | nfrabw 3474 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑠{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} | 
| 524 |  | nfv 1913 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑠(1st ‘𝑥) = 𝑦 | 
| 525 | 523, 524 | nfrexw 3312 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑠∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑦 | 
| 526 |  | nfv 1913 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑦∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑠 | 
| 527 |  | eqeq2 2748 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑠 → ((1st ‘𝑥) = 𝑦 ↔ (1st ‘𝑥) = 𝑠)) | 
| 528 | 527 | rexbidv 3178 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑠 → (∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑠)) | 
| 529 | 525, 526,
528 | cbvabw 2812 | . . . . . . . . . . . . 13
⊢ {𝑦 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑦} = {𝑠 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑠} | 
| 530 | 512, 529 | eqtri 2764 | . . . . . . . . . . . 12
⊢
(1st “ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) = {𝑠 ∣ ∃𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (1st ‘𝑥) = 𝑠} | 
| 531 |  | df-rab 3436 | . . . . . . . . . . . 12
⊢ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} = {𝑠 ∣ (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)} | 
| 532 | 510, 530,
531 | 3eqtr4g 2801 | . . . . . . . . . . 11
⊢ (𝜑 → (1st “
{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) = {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) | 
| 533 |  | foeq3 6817 | . . . . . . . . . . 11
⊢
((1st “ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) = {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} → ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–onto→(1st “ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) ↔ (1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–onto→{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶})) | 
| 534 | 532, 533 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → ((1st ↾
{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–onto→(1st “ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) ↔ (1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–onto→{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶})) | 
| 535 | 435, 534 | mpbii 233 | . . . . . . . . 9
⊢ (𝜑 → (1st ↾
{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–onto→{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) | 
| 536 |  | fof 6819 | . . . . . . . . 9
⊢
((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–onto→{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} → (1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}⟶{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) | 
| 537 | 535, 536 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (1st ↾
{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}⟶{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) | 
| 538 |  | fvres 6924 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} → ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑥) = (1st ‘𝑥)) | 
| 539 |  | fvres 6924 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} → ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑦) = (1st ‘𝑦)) | 
| 540 | 538, 539 | eqeqan12d 2750 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) → (((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑥) = ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑦) ↔ (1st ‘𝑥) = (1st ‘𝑦))) | 
| 541 | 540 | adantl 481 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})) → (((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑥) = ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑦) ↔ (1st ‘𝑥) = (1st ‘𝑦))) | 
| 542 | 446 | elrab 3691 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ↔ (𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶))) | 
| 543 |  | xp2nd 8048 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd ‘𝑥) ∈ (0...𝑁)) | 
| 544 | 543 | anim1i 615 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) → ((2nd ‘𝑥) ∈ (0...𝑁) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶))) | 
| 545 | 542, 544 | sylbi 217 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} → ((2nd ‘𝑥) ∈ (0...𝑁) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶))) | 
| 546 |  | simpl 482 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 =
⦋(2nd ‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 547 | 546 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → ((𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶) → 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶)) | 
| 548 | 547 | ss2rabi 4076 | . . . . . . . . . . . . . . . 16
⊢ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ⊆ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶} | 
| 549 | 548 | sseli 3978 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} → 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶}) | 
| 550 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑦 → (2nd ‘𝑡) = (2nd ‘𝑦)) | 
| 551 | 550 | csbeq1d 3902 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑦 → ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶) | 
| 552 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑦 → (1st ‘𝑡) = (1st ‘𝑦)) | 
| 553 | 552 | csbeq1d 3902 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑦 → ⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(1st
‘𝑦) / 𝑠⦌𝐶) | 
| 554 | 553 | csbeq2dv 3905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑦 → ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶) | 
| 555 | 551, 554 | eqtrd 2776 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑦 → ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶) | 
| 556 | 555 | eqeq2d 2747 | . . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑦 → (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) | 
| 557 | 556 | elrab 3691 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶} ↔ (𝑦 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) | 
| 558 |  | xp2nd 8048 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd ‘𝑦) ∈ (0...𝑁)) | 
| 559 | 558 | anim1i 615 | . . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶) → ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) | 
| 560 | 557, 559 | sylbi 217 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶} → ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) | 
| 561 | 549, 560 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} → ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) | 
| 562 | 545, 561 | anim12i 613 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) → (((2nd ‘𝑥) ∈ (0...𝑁) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) ∧ ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶))) | 
| 563 |  | an4 656 | . . . . . . . . . . . . . . 15
⊢
((((2nd ‘𝑥) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) ↔ (((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁)) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶))) | 
| 564 | 563 | anbi2i 623 | . . . . . . . . . . . . . 14
⊢
((∀𝑖 ∈
(0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ (((2nd ‘𝑥) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶))) ↔ (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ (((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁)) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)))) | 
| 565 |  | anass 468 | . . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘𝑥) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ↔ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶))) | 
| 566 |  | ancom 460 | . . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘𝑥) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ↔ (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶))) | 
| 567 | 565, 566 | bitr3i 277 | . . . . . . . . . . . . . . . 16
⊢
(((2nd ‘𝑥) ∈ (0...𝑁) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) ↔ (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶))) | 
| 568 | 567 | anbi1i 624 | . . . . . . . . . . . . . . 15
⊢
((((2nd ‘𝑥) ∈ (0...𝑁) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) ∧ ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) ↔ ((∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶)) ∧ ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶))) | 
| 569 |  | anass 468 | . . . . . . . . . . . . . . 15
⊢
(((∀𝑖 ∈
(0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶)) ∧ ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) ↔ (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ (((2nd ‘𝑥) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)))) | 
| 570 | 568, 569 | bitri 275 | . . . . . . . . . . . . . 14
⊢
((((2nd ‘𝑥) ∈ (0...𝑁) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) ∧ ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) ↔ (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ (((2nd ‘𝑥) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) ∧ ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)))) | 
| 571 |  | anass 468 | . . . . . . . . . . . . . 14
⊢
(((∀𝑖 ∈
(0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁))) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) ↔ (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ (((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁)) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)))) | 
| 572 | 564, 570,
571 | 3bitr4i 303 | . . . . . . . . . . . . 13
⊢
((((2nd ‘𝑥) ∈ (0...𝑁) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) ∧ ((2nd ‘𝑦) ∈ (0...𝑁) ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) ↔ ((∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁))) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶))) | 
| 573 | 562, 572 | sylib 218 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) → ((∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁))) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶))) | 
| 574 |  | phpreu 37612 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((0...𝑁) ∈ Fin
∧ (0...𝑁) ≈
(0...𝑁)) →
(∀𝑖 ∈
(0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...𝑁)∃!𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 575 | 20, 464, 574 | mp2an 692 | . . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑖 ∈
(0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...𝑁)∃!𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 576 |  | reurmo 3382 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(∃!𝑗 ∈
(0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 → ∃*𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 577 | 576 | ralimi 3082 | . . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑖 ∈
(0...𝑁)∃!𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...𝑁)∃*𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 578 | 575, 577 | sylbi 217 | . . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑖 ∈
(0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...𝑁)∃*𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 579 |  | eqeq1 2740 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑁 → (𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 580 | 579 | rmobidv 3396 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑁 → (∃*𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ ∃*𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 581 | 580 | rspcva 3619 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑁)∃*𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → ∃*𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 582 | 232, 578,
581 | syl2an 596 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → ∃*𝑗 ∈ (0...𝑁)𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 583 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘 𝑁 =
⦋(1st ‘𝑥) / 𝑠⦌𝐶 | 
| 584 | 583 | rmo3 3888 | . . . . . . . . . . . . . . . . . 18
⊢
(∃*𝑗 ∈
(0...𝑁)𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ ∀𝑗 ∈ (0...𝑁)∀𝑘 ∈ (0...𝑁)((𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → 𝑗 = 𝑘)) | 
| 585 | 582, 584 | sylib 218 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → ∀𝑗 ∈ (0...𝑁)∀𝑘 ∈ (0...𝑁)((𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → 𝑗 = 𝑘)) | 
| 586 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑗⦋(2nd ‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 | 
| 587 | 586 | nfeq2 2922 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗 𝑁 =
⦋(2nd ‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 | 
| 588 |  | nfs1v 2155 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗[𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 | 
| 589 | 587, 588 | nfan 1898 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗(𝑁 =
⦋(2nd ‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 590 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗(2nd ‘𝑥) = 𝑘 | 
| 591 | 589, 590 | nfim 1895 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗((𝑁 =
⦋(2nd ‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → (2nd ‘𝑥) = 𝑘) | 
| 592 |  | nfv 1913 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝑁 =
⦋(2nd ‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) → (2nd ‘𝑥) = (2nd ‘𝑦)) | 
| 593 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (2nd ‘𝑥) →
⦋(1st ‘𝑥) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 594 | 593 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (2nd ‘𝑥) → (𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 595 | 594 | anbi1d 631 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (2nd ‘𝑥) → ((𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ↔ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶))) | 
| 596 |  | eqeq1 2740 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (2nd ‘𝑥) → (𝑗 = 𝑘 ↔ (2nd ‘𝑥) = 𝑘)) | 
| 597 | 595, 596 | imbi12d 344 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (2nd ‘𝑥) → (((𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → 𝑗 = 𝑘) ↔ ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → (2nd ‘𝑥) = 𝑘))) | 
| 598 |  | sbsbc 3791 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ([𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 599 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑘 ∈ V | 
| 600 |  | sbceq2g 4418 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ V → ([𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 601 | 599, 600 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
([𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 602 | 598, 601 | bitri 275 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ([𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 603 |  | csbeq1 3901 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (2nd ‘𝑦) → ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) | 
| 604 | 603 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = (2nd ‘𝑦) → (𝑁 = ⦋𝑘 / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 605 | 602, 604 | bitrid 283 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = (2nd ‘𝑦) → ([𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶)) | 
| 606 | 605 | anbi2d 630 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (2nd ‘𝑦) → ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) ↔ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶))) | 
| 607 |  | eqeq2 2748 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (2nd ‘𝑦) → ((2nd
‘𝑥) = 𝑘 ↔ (2nd
‘𝑥) = (2nd
‘𝑦))) | 
| 608 | 606, 607 | imbi12d 344 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (2nd ‘𝑦) → (((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → (2nd ‘𝑥) = 𝑘) ↔ ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) → (2nd ‘𝑥) = (2nd ‘𝑦)))) | 
| 609 | 591, 592,
597, 608 | rspc2 3630 | . . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁)) → (∀𝑗 ∈ (0...𝑁)∀𝑘 ∈ (0...𝑁)((𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ [𝑘 / 𝑗]𝑁 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → 𝑗 = 𝑘) → ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) → (2nd ‘𝑥) = (2nd ‘𝑦)))) | 
| 610 | 585, 609 | syl5com 31 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶) → (((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁)) → ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) → (2nd ‘𝑥) = (2nd ‘𝑦)))) | 
| 611 | 610 | impr 454 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁)))) → ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) → (2nd ‘𝑥) = (2nd ‘𝑦))) | 
| 612 |  | csbeq1 3901 | . . . . . . . . . . . . . . . . . . 19
⊢
((1st ‘𝑥) = (1st ‘𝑦) → ⦋(1st
‘𝑥) / 𝑠⦌𝐶 = ⦋(1st
‘𝑦) / 𝑠⦌𝐶) | 
| 613 | 612 | csbeq2dv 3905 | . . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑥) = (1st ‘𝑦) → ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶) | 
| 614 | 613 | eqeq2d 2747 | . . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑥) = (1st ‘𝑦) → (𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ↔ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶)) | 
| 615 | 614 | anbi2d 630 | . . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑥) = (1st ‘𝑦) → ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) ↔ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶))) | 
| 616 | 615 | imbi1d 341 | . . . . . . . . . . . . . . 15
⊢
((1st ‘𝑥) = (1st ‘𝑦) → (((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶) → (2nd ‘𝑥) = (2nd ‘𝑦)) ↔ ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶) → (2nd ‘𝑥) = (2nd ‘𝑦)))) | 
| 617 | 611, 616 | syl5ibcom 245 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁)))) → ((1st ‘𝑥) = (1st ‘𝑦) → ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶) → (2nd ‘𝑥) = (2nd ‘𝑦)))) | 
| 618 | 617 | com23 86 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁)))) → ((𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶) → ((1st ‘𝑥) = (1st ‘𝑦) → (2nd
‘𝑥) = (2nd
‘𝑦)))) | 
| 619 | 618 | impr 454 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ ((2nd ‘𝑥) ∈ (0...𝑁) ∧ (2nd ‘𝑦) ∈ (0...𝑁))) ∧ (𝑁 = ⦋(2nd
‘𝑥) / 𝑗⦌⦋(1st
‘𝑥) / 𝑠⦌𝐶 ∧ 𝑁 = ⦋(2nd
‘𝑦) / 𝑗⦌⦋(1st
‘𝑦) / 𝑠⦌𝐶))) → ((1st ‘𝑥) = (1st ‘𝑦) → (2nd
‘𝑥) = (2nd
‘𝑦))) | 
| 620 | 573, 619 | sylan2 593 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})) → ((1st ‘𝑥) = (1st ‘𝑦) → (2nd
‘𝑥) = (2nd
‘𝑦))) | 
| 621 |  | elrabi 3686 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} → 𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) | 
| 622 |  | elrabi 3686 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} → 𝑦 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) | 
| 623 |  | xpopth 8056 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑦 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥) = (2nd
‘𝑦)) ↔ 𝑥 = 𝑦)) | 
| 624 | 623 | biimpd 229 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑦 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥) = (2nd
‘𝑦)) → 𝑥 = 𝑦)) | 
| 625 | 624 | expd 415 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝑦 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) → ((1st ‘𝑥) = (1st ‘𝑦) → ((2nd
‘𝑥) = (2nd
‘𝑦) → 𝑥 = 𝑦))) | 
| 626 | 621, 622,
625 | syl2an 596 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) → ((1st ‘𝑥) = (1st ‘𝑦) → ((2nd
‘𝑥) = (2nd
‘𝑦) → 𝑥 = 𝑦))) | 
| 627 | 626 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})) → ((1st ‘𝑥) = (1st ‘𝑦) → ((2nd
‘𝑥) = (2nd
‘𝑦) → 𝑥 = 𝑦))) | 
| 628 | 620, 627 | mpdd 43 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})) → ((1st ‘𝑥) = (1st ‘𝑦) → 𝑥 = 𝑦)) | 
| 629 | 541, 628 | sylbid 240 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∧ 𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})) → (((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑥) = ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑦) → 𝑥 = 𝑦)) | 
| 630 | 629 | ralrimivva 3201 | . . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}∀𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑥) = ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑦) → 𝑥 = 𝑦)) | 
| 631 |  | dff13 7276 | . . . . . . . 8
⊢
((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–1-1→{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ↔ ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}⟶{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ∧ ∀𝑥 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}∀𝑦 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} (((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑥) = ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})‘𝑦) → 𝑥 = 𝑦))) | 
| 632 | 537, 630,
631 | sylanbrc 583 | . . . . . . 7
⊢ (𝜑 → (1st ↾
{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–1-1→{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) | 
| 633 |  | df-f1o 6567 | . . . . . . 7
⊢
((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–1-1-onto→{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ↔ ((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–1-1→{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ∧ (1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–onto→{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶})) | 
| 634 | 632, 535,
633 | sylanbrc 583 | . . . . . 6
⊢ (𝜑 → (1st ↾
{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–1-1-onto→{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) | 
| 635 |  | rabfi 9304 | . . . . . . . . 9
⊢
(((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∈ Fin → {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∈ Fin) | 
| 636 | 138, 635 | ax-mp 5 | . . . . . . . 8
⊢ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∈ Fin | 
| 637 | 636 | elexi 3502 | . . . . . . 7
⊢ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∈ V | 
| 638 | 637 | f1oen 9014 | . . . . . 6
⊢
((1st ↾ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}):{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}–1-1-onto→{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} → {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) | 
| 639 | 634, 638 | syl 17 | . . . . 5
⊢ (𝜑 → {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) | 
| 640 |  | rabfi 9304 | . . . . . . 7
⊢
((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ Fin → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ∈ Fin) | 
| 641 | 136, 640 | ax-mp 5 | . . . . . 6
⊢ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ∈ Fin | 
| 642 |  | hashen 14387 | . . . . . 6
⊢ (({𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ∈ Fin ∧ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ∈ Fin) → ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) ↔ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶})) | 
| 643 | 636, 641,
642 | mp2an 692 | . . . . 5
⊢
((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) ↔ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) | 
| 644 | 639, 643 | sylibr 234 | . . . 4
⊢ (𝜑 → (♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶})) | 
| 645 | 644 | oveq2d 7448 | . . 3
⊢ (𝜑 → ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ (𝑁 = ⦋(2nd
‘𝑡) / 𝑗⦌⦋(1st
‘𝑡) / 𝑠⦌𝐶 ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶)})) = ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}))) | 
| 646 | 202, 425,
645 | 3eqtr3d 2784 | . 2
⊢ (𝜑 → Σ𝑥 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(♯‘({𝑥} × {𝑦 ∈ (0...𝑁) ∣ (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋𝑥 / 𝑠⦌𝐶 ∧ ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋𝑥 / 𝑠⦌𝐶)})) = ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}))) | 
| 647 | 135, 646 | breqtrd 5168 | 1
⊢ (𝜑 → 2 ∥
((♯‘{𝑡 ∈
((((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌𝐶}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}))) |