MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvbtrcl Structured version   Visualization version   GIF version

Theorem cvbtrcl 14631
Description: Change of bound variable in class of all transitive relations which are supersets of a relation. (Contributed by RP, 5-May-2020.)
Assertion
Ref Expression
cvbtrcl {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑦 ∣ (𝑅𝑦 ∧ (𝑦𝑦) ⊆ 𝑦)}
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem cvbtrcl
StepHypRef Expression
1 trcleq2lem 14630 . 2 (𝑥 = 𝑦 → ((𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ (𝑅𝑦 ∧ (𝑦𝑦) ⊆ 𝑦)))
21cbvabv 2812 1 {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑦 ∣ (𝑅𝑦 ∧ (𝑦𝑦) ⊆ 𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  {cab 2715  wss 3883  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-opab 5133  df-co 5589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator