![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cvbtrcl | Structured version Visualization version GIF version |
Description: Change of bound variable in class of all transitive relations which are supersets of a relation. (Contributed by RP, 5-May-2020.) |
Ref | Expression |
---|---|
cvbtrcl | ⊢ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = {𝑦 ∣ (𝑅 ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trcleq2lem 14885 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) ↔ (𝑅 ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))) | |
2 | 1 | cbvabv 2806 | 1 ⊢ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = {𝑦 ∣ (𝑅 ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 {cab 2710 ⊆ wss 3914 ∘ ccom 5641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3449 df-in 3921 df-ss 3931 df-br 5110 df-opab 5172 df-co 5646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |