| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trcleq12lem | Structured version Visualization version GIF version | ||
| Description: Equality implies bijection. (Contributed by RP, 9-May-2020.) |
| Ref | Expression |
|---|---|
| trcleq12lem | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleq1lem 15022 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴))) | |
| 2 | trcleq2lem 15031 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑆 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ⊆ wss 3950 ∘ ccom 5688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ss 3967 df-br 5143 df-opab 5205 df-co 5693 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |