![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trcleq12lem | Structured version Visualization version GIF version |
Description: Equality implies bijection. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
trcleq12lem | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleq1lem 15018 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴))) | |
2 | trcleq2lem 15027 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑆 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) | |
3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊆ wss 3963 ∘ ccom 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ss 3980 df-br 5149 df-opab 5211 df-co 5698 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |