MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcleq12lem Structured version   Visualization version   GIF version

Theorem trcleq12lem 14993
Description: Equality implies bijection. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
trcleq12lem ((𝑅 = 𝑆𝐴 = 𝐵) → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑆𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))

Proof of Theorem trcleq12lem
StepHypRef Expression
1 cleq1lem 14982 . 2 (𝑅 = 𝑆 → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑆𝐴 ∧ (𝐴𝐴) ⊆ 𝐴)))
2 trcleq2lem 14991 . 2 (𝐴 = 𝐵 → ((𝑆𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑆𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))
31, 2sylan9bb 508 1 ((𝑅 = 𝑆𝐴 = 𝐵) → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑆𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wss 3946  ccom 5685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ss 3963  df-br 5153  df-opab 5215  df-co 5690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator