MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcleq12lem Structured version   Visualization version   GIF version

Theorem trcleq12lem 15033
Description: Equality implies bijection. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
trcleq12lem ((𝑅 = 𝑆𝐴 = 𝐵) → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑆𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))

Proof of Theorem trcleq12lem
StepHypRef Expression
1 cleq1lem 15022 . 2 (𝑅 = 𝑆 → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑆𝐴 ∧ (𝐴𝐴) ⊆ 𝐴)))
2 trcleq2lem 15031 . 2 (𝐴 = 𝐵 → ((𝑆𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑆𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))
31, 2sylan9bb 509 1 ((𝑅 = 𝑆𝐴 = 𝐵) → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑆𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wss 3950  ccom 5688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ss 3967  df-br 5143  df-opab 5205  df-co 5693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator