![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trcleq2lem | Structured version Visualization version GIF version |
Description: Equality implies bijection. (Contributed by RP, 5-May-2020.) |
Ref | Expression |
---|---|
trcleq2lem | ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3974 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 ⊆ 𝐴 ↔ 𝑅 ⊆ 𝐵)) | |
2 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 2, 2 | coeq12d 5824 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐴) = (𝐵 ∘ 𝐵)) |
4 | 3, 2 | sseq12d 3981 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ∘ 𝐴) ⊆ 𝐴 ↔ (𝐵 ∘ 𝐵) ⊆ 𝐵)) |
5 | 1, 4 | anbi12d 632 | 1 ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ⊆ wss 3914 ∘ ccom 5641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3449 df-in 3921 df-ss 3931 df-br 5110 df-opab 5172 df-co 5646 |
This theorem is referenced by: cvbtrcl 14886 trcleq12lem 14887 trclublem 14889 cotrtrclfv 14906 trclun 14908 trclexi 41984 dftrcl3 42084 |
Copyright terms: Public domain | W3C validator |