MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcleq2lem Structured version   Visualization version   GIF version

Theorem trcleq2lem 15015
Description: Equality implies bijection. (Contributed by RP, 5-May-2020.)
Assertion
Ref Expression
trcleq2lem (𝐴 = 𝐵 → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑅𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))

Proof of Theorem trcleq2lem
StepHypRef Expression
1 sseq2 3990 . 2 (𝐴 = 𝐵 → (𝑅𝐴𝑅𝐵))
2 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
32, 2coeq12d 5849 . . 3 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐵))
43, 2sseq12d 3997 . 2 (𝐴 = 𝐵 → ((𝐴𝐴) ⊆ 𝐴 ↔ (𝐵𝐵) ⊆ 𝐵))
51, 4anbi12d 632 1 (𝐴 = 𝐵 → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑅𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wss 3931  ccom 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ss 3948  df-br 5125  df-opab 5187  df-co 5668
This theorem is referenced by:  cvbtrcl  15016  trcleq12lem  15017  trclublem  15019  cotrtrclfv  15036  trclun  15038  trclexi  43611  dftrcl3  43711
  Copyright terms: Public domain W3C validator