![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-co | Structured version Visualization version GIF version |
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 29691) because (cos‘0) = 1 (see cos0 16093) and (exp‘1) = e (see df-e 16012). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of ∘, and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-co | ⊢ (𝐴 ∘ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | ccom 5681 | . 2 class (𝐴 ∘ 𝐵) |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 4 | cv 1541 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1541 | . . . . . 6 class 𝑧 |
8 | 5, 7, 2 | wbr 5149 | . . . . 5 wff 𝑥𝐵𝑧 |
9 | vy | . . . . . . 7 setvar 𝑦 | |
10 | 9 | cv 1541 | . . . . . 6 class 𝑦 |
11 | 7, 10, 1 | wbr 5149 | . . . . 5 wff 𝑧𝐴𝑦 |
12 | 8, 11 | wa 397 | . . . 4 wff (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
13 | 12, 6 | wex 1782 | . . 3 wff ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
14 | 13, 4, 9 | copab 5211 | . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
15 | 3, 14 | wceq 1542 | 1 wff (𝐴 ∘ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
Colors of variables: wff setvar class |
This definition is referenced by: coss1 5856 coss2 5857 nfco 5866 brcog 5867 cnvco 5886 relco 6108 coundi 6247 coundir 6248 cores 6249 xpco 6289 dffun2OLDOLD 6556 funco 6589 xpcomco 9062 coss12d 14919 xpcogend 14921 trclublem 14942 rtrclreclem3 15007 bj-opabco 36069 bj-xpcossxp 36070 dfcoss3 37284 |
Copyright terms: Public domain | W3C validator |