| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-co | Structured version Visualization version GIF version | ||
| Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 30365) because (cos‘0) = 1 (see cos0 16166) and (exp‘1) = e (see df-e 16082). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of ∘, and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-co | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | ccom 5658 | . 2 class (𝐴 ∘ 𝐵) |
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | 5, 7, 2 | wbr 5119 | . . . . 5 wff 𝑥𝐵𝑧 |
| 9 | vy | . . . . . . 7 setvar 𝑦 | |
| 10 | 9 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 1 | wbr 5119 | . . . . 5 wff 𝑧𝐴𝑦 |
| 12 | 8, 11 | wa 395 | . . . 4 wff (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
| 13 | 12, 6 | wex 1779 | . . 3 wff ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
| 14 | 13, 4, 9 | copab 5181 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| 15 | 3, 14 | wceq 1540 | 1 wff (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: coss1 5835 coss2 5836 nfco 5845 brcog 5846 cnvco 5865 relco 6095 coundi 6236 coundir 6237 cores 6238 xpco 6278 dffun2OLDOLD 6542 funco 6575 xpcomco 9074 coss12d 14989 xpcogend 14991 trclublem 15012 rtrclreclem3 15077 bj-opabco 37152 bj-xpcossxp 37153 dfcoss3 38378 |
| Copyright terms: Public domain | W3C validator |