MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-co Structured version   Visualization version   GIF version

Definition df-co 5709
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 30470) because (cos‘0) = 1 (see cos0 16198) and (exp‘1) = e (see df-e 16116). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2ccom 5704 . 2 class (𝐴𝐵)
4 vx . . . . . . 7 setvar 𝑥
54cv 1536 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1536 . . . . . 6 class 𝑧
85, 7, 2wbr 5166 . . . . 5 wff 𝑥𝐵𝑧
9 vy . . . . . . 7 setvar 𝑦
109cv 1536 . . . . . 6 class 𝑦
117, 10, 1wbr 5166 . . . . 5 wff 𝑧𝐴𝑦
128, 11wa 395 . . . 4 wff (𝑥𝐵𝑧𝑧𝐴𝑦)
1312, 6wex 1777 . . 3 wff 𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)
1413, 4, 9copab 5228 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
153, 14wceq 1537 1 wff (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  coss1  5880  coss2  5881  nfco  5890  brcog  5891  cnvco  5910  relco  6138  coundi  6278  coundir  6279  cores  6280  xpco  6320  dffun2OLDOLD  6585  funco  6618  xpcomco  9128  coss12d  15021  xpcogend  15023  trclublem  15044  rtrclreclem3  15109  bj-opabco  37154  bj-xpcossxp  37155  dfcoss3  38370
  Copyright terms: Public domain W3C validator