Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-co | Structured version Visualization version GIF version |
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 28811) because (cos‘0) = 1 (see cos0 15868) and (exp‘1) = e (see df-e 15787). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of ∘, and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-co | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | ccom 5594 | . 2 class (𝐴 ∘ 𝐵) |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 4 | cv 1538 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑧 |
8 | 5, 7, 2 | wbr 5075 | . . . . 5 wff 𝑥𝐵𝑧 |
9 | vy | . . . . . . 7 setvar 𝑦 | |
10 | 9 | cv 1538 | . . . . . 6 class 𝑦 |
11 | 7, 10, 1 | wbr 5075 | . . . . 5 wff 𝑧𝐴𝑦 |
12 | 8, 11 | wa 396 | . . . 4 wff (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
13 | 12, 6 | wex 1782 | . . 3 wff ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
14 | 13, 4, 9 | copab 5137 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
15 | 3, 14 | wceq 1539 | 1 wff (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
Colors of variables: wff setvar class |
This definition is referenced by: coss1 5767 coss2 5768 nfco 5777 brcog 5778 cnvco 5797 relco 6019 coundi 6155 coundir 6156 cores 6157 xpco 6196 dffun2OLD 6448 funco 6481 xpcomco 8858 coss12d 14692 xpcogend 14694 trclublem 14715 rtrclreclem3 14780 bj-opabco 35368 bj-xpcossxp 35369 dfcoss3 36547 |
Copyright terms: Public domain | W3C validator |