MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-co Structured version   Visualization version   GIF version

Definition df-co 5691
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 30371) because (cos‘0) = 1 (see cos0 16152) and (exp‘1) = e (see df-e 16070). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2ccom 5686 . 2 class (𝐴𝐵)
4 vx . . . . . . 7 setvar 𝑥
54cv 1533 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1533 . . . . . 6 class 𝑧
85, 7, 2wbr 5153 . . . . 5 wff 𝑥𝐵𝑧
9 vy . . . . . . 7 setvar 𝑦
109cv 1533 . . . . . 6 class 𝑦
117, 10, 1wbr 5153 . . . . 5 wff 𝑧𝐴𝑦
128, 11wa 394 . . . 4 wff (𝑥𝐵𝑧𝑧𝐴𝑦)
1312, 6wex 1774 . . 3 wff 𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)
1413, 4, 9copab 5215 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
153, 14wceq 1534 1 wff (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  coss1  5862  coss2  5863  nfco  5872  brcog  5873  cnvco  5892  relco  6118  coundi  6258  coundir  6259  cores  6260  xpco  6300  dffun2OLDOLD  6566  funco  6599  xpcomco  9100  coss12d  14977  xpcogend  14979  trclublem  15000  rtrclreclem3  15065  bj-opabco  36895  bj-xpcossxp  36896  dfcoss3  38112
  Copyright terms: Public domain W3C validator