![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-co | Structured version Visualization version GIF version |
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 30470) because (cos‘0) = 1 (see cos0 16198) and (exp‘1) = e (see df-e 16116). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of ∘, and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-co | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | ccom 5704 | . 2 class (𝐴 ∘ 𝐵) |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 4 | cv 1536 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1536 | . . . . . 6 class 𝑧 |
8 | 5, 7, 2 | wbr 5166 | . . . . 5 wff 𝑥𝐵𝑧 |
9 | vy | . . . . . . 7 setvar 𝑦 | |
10 | 9 | cv 1536 | . . . . . 6 class 𝑦 |
11 | 7, 10, 1 | wbr 5166 | . . . . 5 wff 𝑧𝐴𝑦 |
12 | 8, 11 | wa 395 | . . . 4 wff (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
13 | 12, 6 | wex 1777 | . . 3 wff ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
14 | 13, 4, 9 | copab 5228 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
15 | 3, 14 | wceq 1537 | 1 wff (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
Colors of variables: wff setvar class |
This definition is referenced by: coss1 5880 coss2 5881 nfco 5890 brcog 5891 cnvco 5910 relco 6138 coundi 6278 coundir 6279 cores 6280 xpco 6320 dffun2OLDOLD 6585 funco 6618 xpcomco 9128 coss12d 15021 xpcogend 15023 trclublem 15044 rtrclreclem3 15109 bj-opabco 37154 bj-xpcossxp 37155 dfcoss3 38370 |
Copyright terms: Public domain | W3C validator |