| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-co | Structured version Visualization version GIF version | ||
| Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 30340) because (cos‘0) = 1 (see cos0 16094) and (exp‘1) = e (see df-e 16010). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of ∘, and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-co | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | ccom 5635 | . 2 class (𝐴 ∘ 𝐵) |
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | 5, 7, 2 | wbr 5102 | . . . . 5 wff 𝑥𝐵𝑧 |
| 9 | vy | . . . . . . 7 setvar 𝑦 | |
| 10 | 9 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 1 | wbr 5102 | . . . . 5 wff 𝑧𝐴𝑦 |
| 12 | 8, 11 | wa 395 | . . . 4 wff (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
| 13 | 12, 6 | wex 1779 | . . 3 wff ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
| 14 | 13, 4, 9 | copab 5164 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| 15 | 3, 14 | wceq 1540 | 1 wff (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: coss1 5809 coss2 5810 nfco 5819 brcog 5820 cnvco 5839 relco 6068 coundi 6208 coundir 6209 cores 6210 xpco 6250 funco 6540 xpcomco 9008 coss12d 14914 xpcogend 14916 trclublem 14937 rtrclreclem3 15002 bj-opabco 37149 bj-xpcossxp 37150 dfcoss3 38378 |
| Copyright terms: Public domain | W3C validator |