MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-co Structured version   Visualization version   GIF version

Definition df-co 5628
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 30382) because (cos‘0) = 1 (see cos0 16059) and (exp‘1) = e (see df-e 15975). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2ccom 5623 . 2 class (𝐴𝐵)
4 vx . . . . . . 7 setvar 𝑥
54cv 1539 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1539 . . . . . 6 class 𝑧
85, 7, 2wbr 5092 . . . . 5 wff 𝑥𝐵𝑧
9 vy . . . . . . 7 setvar 𝑦
109cv 1539 . . . . . 6 class 𝑦
117, 10, 1wbr 5092 . . . . 5 wff 𝑧𝐴𝑦
128, 11wa 395 . . . 4 wff (𝑥𝐵𝑧𝑧𝐴𝑦)
1312, 6wex 1779 . . 3 wff 𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)
1413, 4, 9copab 5154 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
153, 14wceq 1540 1 wff (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  coss1  5798  coss2  5799  nfco  5808  brcog  5809  cnvco  5828  relco  6059  coundi  6196  coundir  6197  cores  6198  xpco  6237  funco  6522  xpcomco  8984  coss12d  14879  xpcogend  14881  trclublem  14902  rtrclreclem3  14967  bj-opabco  37172  bj-xpcossxp  37173  dfcoss3  38401
  Copyright terms: Public domain W3C validator