| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-co | Structured version Visualization version GIF version | ||
| Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 30367) because (cos‘0) = 1 (see cos0 16118) and (exp‘1) = e (see df-e 16034). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of ∘, and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-co | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | ccom 5642 | . 2 class (𝐴 ∘ 𝐵) |
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | 5, 7, 2 | wbr 5107 | . . . . 5 wff 𝑥𝐵𝑧 |
| 9 | vy | . . . . . . 7 setvar 𝑦 | |
| 10 | 9 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 1 | wbr 5107 | . . . . 5 wff 𝑧𝐴𝑦 |
| 12 | 8, 11 | wa 395 | . . . 4 wff (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
| 13 | 12, 6 | wex 1779 | . . 3 wff ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
| 14 | 13, 4, 9 | copab 5169 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| 15 | 3, 14 | wceq 1540 | 1 wff (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: coss1 5819 coss2 5820 nfco 5829 brcog 5830 cnvco 5849 relco 6079 coundi 6220 coundir 6221 cores 6222 xpco 6262 dffun2OLDOLD 6523 funco 6556 xpcomco 9031 coss12d 14938 xpcogend 14940 trclublem 14961 rtrclreclem3 15026 bj-opabco 37176 bj-xpcossxp 37177 dfcoss3 38405 |
| Copyright terms: Public domain | W3C validator |