MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-co Structured version   Visualization version   GIF version

Definition df-co 5623
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 30418) because (cos‘0) = 1 (see cos0 16059) and (exp‘1) = e (see df-e 15975). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2ccom 5618 . 2 class (𝐴𝐵)
4 vx . . . . . . 7 setvar 𝑥
54cv 1540 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1540 . . . . . 6 class 𝑧
85, 7, 2wbr 5089 . . . . 5 wff 𝑥𝐵𝑧
9 vy . . . . . . 7 setvar 𝑦
109cv 1540 . . . . . 6 class 𝑦
117, 10, 1wbr 5089 . . . . 5 wff 𝑧𝐴𝑦
128, 11wa 395 . . . 4 wff (𝑥𝐵𝑧𝑧𝐴𝑦)
1312, 6wex 1780 . . 3 wff 𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)
1413, 4, 9copab 5151 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
153, 14wceq 1541 1 wff (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  coss1  5794  coss2  5795  nfco  5804  brcog  5805  cnvco  5824  relco  6056  coundi  6194  coundir  6195  cores  6196  xpco  6236  funco  6521  xpcomco  8980  coss12d  14879  xpcogend  14881  trclublem  14902  rtrclreclem3  14967  dfsuccf2  35985  bj-opabco  37232  bj-xpcossxp  37233  dfcoss3  38526
  Copyright terms: Public domain W3C validator