MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-co Structured version   Visualization version   GIF version

Definition df-co 5686
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 29691) because (cos‘0) = 1 (see cos0 16093) and (exp‘1) = e (see df-e 16012). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2ccom 5681 . 2 class (𝐴𝐵)
4 vx . . . . . . 7 setvar 𝑥
54cv 1541 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1541 . . . . . 6 class 𝑧
85, 7, 2wbr 5149 . . . . 5 wff 𝑥𝐵𝑧
9 vy . . . . . . 7 setvar 𝑦
109cv 1541 . . . . . 6 class 𝑦
117, 10, 1wbr 5149 . . . . 5 wff 𝑧𝐴𝑦
128, 11wa 397 . . . 4 wff (𝑥𝐵𝑧𝑧𝐴𝑦)
1312, 6wex 1782 . . 3 wff 𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)
1413, 4, 9copab 5211 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
153, 14wceq 1542 1 wff (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  coss1  5856  coss2  5857  nfco  5866  brcog  5867  cnvco  5886  relco  6108  coundi  6247  coundir  6248  cores  6249  xpco  6289  dffun2OLDOLD  6556  funco  6589  xpcomco  9062  coss12d  14919  xpcogend  14921  trclublem  14942  rtrclreclem3  15007  bj-opabco  36069  bj-xpcossxp  36070  dfcoss3  37284
  Copyright terms: Public domain W3C validator