| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-co | Structured version Visualization version GIF version | ||
| Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example, ((exp ∘ cos)‘0) = e (ex-co 30382) because (cos‘0) = 1 (see cos0 16059) and (exp‘1) = e (see df-e 15975). Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses / instead of ∘, and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-co | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | ccom 5623 | . 2 class (𝐴 ∘ 𝐵) |
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | 5, 7, 2 | wbr 5092 | . . . . 5 wff 𝑥𝐵𝑧 |
| 9 | vy | . . . . . . 7 setvar 𝑦 | |
| 10 | 9 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 1 | wbr 5092 | . . . . 5 wff 𝑧𝐴𝑦 |
| 12 | 8, 11 | wa 395 | . . . 4 wff (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
| 13 | 12, 6 | wex 1779 | . . 3 wff ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
| 14 | 13, 4, 9 | copab 5154 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| 15 | 3, 14 | wceq 1540 | 1 wff (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: coss1 5798 coss2 5799 nfco 5808 brcog 5809 cnvco 5828 relco 6059 coundi 6196 coundir 6197 cores 6198 xpco 6237 funco 6522 xpcomco 8984 coss12d 14879 xpcogend 14881 trclublem 14902 rtrclreclem3 14967 bj-opabco 37172 bj-xpcossxp 37173 dfcoss3 38401 |
| Copyright terms: Public domain | W3C validator |