![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemddea | Structured version Visualization version GIF version |
Description: Lemma for dath 38910. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
da.ps0 | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
Ref | Expression |
---|---|
dalemddea | ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | da.ps0 | . 2 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
2 | simp1r 1196 | . 2 ⊢ (((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) → 𝑑 ∈ 𝐴) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 ≠ wne 2938 class class class wbr 5147 (class class class)co 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: dalemswapyzps 38864 dalemrotps 38865 dalemcjden 38866 dalem21 38868 dalem23 38870 dalem24 38871 dalem25 38872 dalem27 38873 dalem56 38902 |
Copyright terms: Public domain | W3C validator |