Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemddea Structured version   Visualization version   GIF version

Theorem dalemddea 37667
Description: Lemma for dath 37719. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.)
Hypothesis
Ref Expression
da.ps0 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
Assertion
Ref Expression
dalemddea (𝜓𝑑𝐴)

Proof of Theorem dalemddea
StepHypRef Expression
1 da.ps0 . 2 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
2 simp1r 1196 . 2 (((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) → 𝑑𝐴)
31, 2sylbi 216 1 (𝜓𝑑𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wcel 2107  wne 2941   class class class wbr 5075  (class class class)co 7260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  dalemswapyzps  37673  dalemrotps  37674  dalemcjden  37675  dalem21  37677  dalem23  37679  dalem24  37680  dalem25  37681  dalem27  37682  dalem56  37711
  Copyright terms: Public domain W3C validator