| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem48 | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39760. Analogue of dalem45 39741 for 𝑃𝑄. (Contributed by NM, 16-Aug-2012.) |
| Ref | Expression |
|---|---|
| dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalem.l | ⊢ ≤ = (le‘𝐾) |
| dalem.j | ⊢ ∨ = (join‘𝐾) |
| dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| dalem44.m | ⊢ ∧ = (meet‘𝐾) |
| dalem44.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalem44.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| dalem44.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| dalem44.g | ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
| dalem44.h | ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) |
| dalem44.i | ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) |
| Ref | Expression |
|---|---|
| dalem48 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalem.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 2 | 1 | dalemkelat 39648 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐾 ∈ Lat) |
| 4 | dalem.ps | . . . 4 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
| 5 | dalem.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 4, 5 | dalemcceb 39713 | . . 3 ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑐 ∈ (Base‘𝐾)) |
| 8 | dalem.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 9 | 1, 8, 5 | dalempjqeb 39669 | . . 3 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 11 | 1, 5 | dalemreb 39665 | . . 3 ⊢ (𝜑 → 𝑅 ∈ (Base‘𝐾)) |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ (Base‘𝐾)) |
| 13 | 4 | dalem-ccly 39709 | . . . 4 ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) |
| 14 | dalem44.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 15 | 14 | breq2i 5132 | . . . 4 ⊢ (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 16 | 13, 15 | sylnib 328 | . . 3 ⊢ (𝜓 → ¬ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 18 | eqid 2736 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 19 | dalem.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 20 | 18, 19, 8 | latnlej2l 18475 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) ∧ ¬ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → ¬ 𝑐 ≤ (𝑃 ∨ 𝑄)) |
| 21 | 3, 7, 10, 12, 17, 20 | syl131anc 1385 | 1 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 joincjn 18328 meetcmee 18329 Latclat 18446 Atomscatm 39286 HLchlt 39373 LPlanesclpl 39516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-poset 18330 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-lat 18447 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 |
| This theorem is referenced by: dalem49 39745 dalem51 39747 dalem52 39748 |
| Copyright terms: Public domain | W3C validator |