![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem48 | Structured version Visualization version GIF version |
Description: Lemma for dath 39336. Analogue of dalem45 39317 for 𝑃𝑄. (Contributed by NM, 16-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
dalem44.m | ⊢ ∧ = (meet‘𝐾) |
dalem44.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem44.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem44.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem44.g | ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
dalem44.h | ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) |
dalem44.i | ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) |
Ref | Expression |
---|---|
dalem48 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkelat 39224 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) |
3 | 2 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐾 ∈ Lat) |
4 | dalem.ps | . . . 4 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
5 | dalem.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4, 5 | dalemcceb 39289 | . . 3 ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
7 | 6 | adantl 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑐 ∈ (Base‘𝐾)) |
8 | dalem.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
9 | 1, 8, 5 | dalempjqeb 39245 | . . 3 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
10 | 9 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
11 | 1, 5 | dalemreb 39241 | . . 3 ⊢ (𝜑 → 𝑅 ∈ (Base‘𝐾)) |
12 | 11 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ (Base‘𝐾)) |
13 | 4 | dalem-ccly 39285 | . . . 4 ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) |
14 | dalem44.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
15 | 14 | breq2i 5157 | . . . 4 ⊢ (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
16 | 13, 15 | sylnib 327 | . . 3 ⊢ (𝜓 → ¬ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
17 | 16 | adantl 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
18 | eqid 2725 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
19 | dalem.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
20 | 18, 19, 8 | latnlej2l 18455 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) ∧ ¬ 𝑐 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) → ¬ 𝑐 ≤ (𝑃 ∨ 𝑄)) |
21 | 3, 7, 10, 12, 17, 20 | syl131anc 1380 | 1 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 lecple 17243 joincjn 18306 meetcmee 18307 Latclat 18426 Atomscatm 38862 HLchlt 38949 LPlanesclpl 39092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-poset 18308 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-lat 18427 df-ats 38866 df-atl 38897 df-cvlat 38921 df-hlat 38950 |
This theorem is referenced by: dalem49 39321 dalem51 39323 dalem52 39324 |
Copyright terms: Public domain | W3C validator |