Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem39 Structured version   Visualization version   GIF version

Theorem dalem39 39668
Description: Lemma for dath 39693. Auxiliary atoms 𝐺, 𝐻, and 𝐼 are not colinear. (Contributed by NM, 4-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem38.m = (meet‘𝐾)
dalem38.o 𝑂 = (LPlanes‘𝐾)
dalem38.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem38.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem38.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem38.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem38.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem39 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐻 (𝐼 𝐺))

Proof of Theorem dalem39
StepHypRef Expression
1 dalem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39580 . . . 4 (𝜑𝐾 ∈ HL)
323ad2ant1 1133 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
41dalemyeo 39589 . . . . 5 (𝜑𝑌𝑂)
543ad2ant1 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑌𝑂)
6 dalem.ps . . . . . 6 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
76dalemccea 39640 . . . . 5 (𝜓𝑐𝐴)
873ad2ant3 1135 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
96dalem-ccly 39642 . . . . 5 (𝜓 → ¬ 𝑐 𝑌)
1093ad2ant3 1135 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 𝑌)
11 dalem.l . . . . 5 = (le‘𝐾)
12 dalem.j . . . . 5 = (join‘𝐾)
13 dalem.a . . . . 5 𝐴 = (Atoms‘𝐾)
14 dalem38.o . . . . 5 𝑂 = (LPlanes‘𝐾)
15 eqid 2740 . . . . 5 (LVols‘𝐾) = (LVols‘𝐾)
1611, 12, 13, 14, 15lvoli3 39534 . . . 4 (((𝐾 ∈ HL ∧ 𝑌𝑂𝑐𝐴) ∧ ¬ 𝑐 𝑌) → (𝑌 𝑐) ∈ (LVols‘𝐾))
173, 5, 8, 10, 16syl31anc 1373 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 𝑐) ∈ (LVols‘𝐾))
18 dalem38.m . . . 4 = (meet‘𝐾)
19 dalem38.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
20 dalem38.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
21 dalem38.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
221, 11, 12, 13, 6, 18, 14, 19, 20, 21dalem34 39663 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
23 dalem38.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
241, 11, 12, 13, 6, 18, 14, 19, 20, 23dalem23 39653 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
2511, 12, 13, 15lvolnle3at 39539 . . 3 (((𝐾 ∈ HL ∧ (𝑌 𝑐) ∈ (LVols‘𝐾)) ∧ (𝐼𝐴𝐺𝐴𝑐𝐴)) → ¬ (𝑌 𝑐) ((𝐼 𝐺) 𝑐))
263, 17, 22, 24, 8, 25syl23anc 1377 . 2 ((𝜑𝑌 = 𝑍𝜓) → ¬ (𝑌 𝑐) ((𝐼 𝐺) 𝑐))
27 dalem38.h . . . . . . 7 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
281, 11, 12, 13, 6, 18, 14, 19, 20, 23, 27, 21dalem38 39667 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (((𝐺 𝐻) 𝐼) 𝑐))
291dalemkelat 39581 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
30293ad2ant1 1133 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
311, 11, 12, 13, 6, 18, 14, 19, 20, 27dalem29 39658 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
32 eqid 2740 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
3332, 12, 13hlatjcl 39323 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
343, 24, 31, 33syl3anc 1371 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
3532, 13atbase 39245 . . . . . . . . 9 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
3622, 35syl 17 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
3732, 12latjcl 18509 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
3830, 34, 36, 37syl3anc 1371 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
396, 13dalemcceb 39646 . . . . . . . 8 (𝜓𝑐 ∈ (Base‘𝐾))
40393ad2ant3 1135 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
4132, 11, 12latlej2 18519 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾)) → 𝑐 (((𝐺 𝐻) 𝐼) 𝑐))
4230, 38, 40, 41syl3anc 1371 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (((𝐺 𝐻) 𝐼) 𝑐))
431, 14dalemyeb 39606 . . . . . . . 8 (𝜑𝑌 ∈ (Base‘𝐾))
44433ad2ant1 1133 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
4532, 12latjcl 18509 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾)) → (((𝐺 𝐻) 𝐼) 𝑐) ∈ (Base‘𝐾))
4630, 38, 40, 45syl3anc 1371 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑐) ∈ (Base‘𝐾))
4732, 11, 12latjle12 18520 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑌 ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾) ∧ (((𝐺 𝐻) 𝐼) 𝑐) ∈ (Base‘𝐾))) → ((𝑌 (((𝐺 𝐻) 𝐼) 𝑐) ∧ 𝑐 (((𝐺 𝐻) 𝐼) 𝑐)) ↔ (𝑌 𝑐) (((𝐺 𝐻) 𝐼) 𝑐)))
4830, 44, 40, 46, 47syl13anc 1372 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝑌 (((𝐺 𝐻) 𝐼) 𝑐) ∧ 𝑐 (((𝐺 𝐻) 𝐼) 𝑐)) ↔ (𝑌 𝑐) (((𝐺 𝐻) 𝐼) 𝑐)))
4928, 42, 48mpbi2and 711 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 𝑐) (((𝐺 𝐻) 𝐼) 𝑐))
5012, 13hlatjrot 39329 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝐺𝐴𝐻𝐴𝐼𝐴)) → ((𝐺 𝐻) 𝐼) = ((𝐼 𝐺) 𝐻))
513, 24, 31, 22, 50syl13anc 1372 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) = ((𝐼 𝐺) 𝐻))
5251oveq1d 7463 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑐) = (((𝐼 𝐺) 𝐻) 𝑐))
5349, 52breqtrd 5192 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 𝑐) (((𝐼 𝐺) 𝐻) 𝑐))
5453adantr 480 . . 3 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝐻 (𝐼 𝐺)) → (𝑌 𝑐) (((𝐼 𝐺) 𝐻) 𝑐))
5532, 13atbase 39245 . . . . . . 7 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
5631, 55syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
5732, 12, 13hlatjcl 39323 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝐼𝐴𝐺𝐴) → (𝐼 𝐺) ∈ (Base‘𝐾))
583, 22, 24, 57syl3anc 1371 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝐼 𝐺) ∈ (Base‘𝐾))
5932, 11, 12latleeqj2 18522 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝐻 ∈ (Base‘𝐾) ∧ (𝐼 𝐺) ∈ (Base‘𝐾)) → (𝐻 (𝐼 𝐺) ↔ ((𝐼 𝐺) 𝐻) = (𝐼 𝐺)))
6030, 56, 58, 59syl3anc 1371 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝐻 (𝐼 𝐺) ↔ ((𝐼 𝐺) 𝐻) = (𝐼 𝐺)))
6160biimpa 476 . . . 4 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝐻 (𝐼 𝐺)) → ((𝐼 𝐺) 𝐻) = (𝐼 𝐺))
6261oveq1d 7463 . . 3 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝐻 (𝐼 𝐺)) → (((𝐼 𝐺) 𝐻) 𝑐) = ((𝐼 𝐺) 𝑐))
6354, 62breqtrd 5192 . 2 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝐻 (𝐼 𝐺)) → (𝑌 𝑐) ((𝐼 𝐺) 𝑐))
6426, 63mtand 815 1 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐻 (𝐼 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Latclat 18501  Atomscatm 39219  HLchlt 39306  LPlanesclpl 39449  LVolsclvol 39450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457
This theorem is referenced by:  dalem40  39669  dalem41  39670
  Copyright terms: Public domain W3C validator