Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem39 Structured version   Visualization version   GIF version

Theorem dalem39 39698
Description: Lemma for dath 39723. Auxiliary atoms 𝐺, 𝐻, and 𝐼 are not colinear. (Contributed by NM, 4-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem38.m = (meet‘𝐾)
dalem38.o 𝑂 = (LPlanes‘𝐾)
dalem38.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem38.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem38.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem38.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem38.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem39 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐻 (𝐼 𝐺))

Proof of Theorem dalem39
StepHypRef Expression
1 dalem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39610 . . . 4 (𝜑𝐾 ∈ HL)
323ad2ant1 1133 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
41dalemyeo 39619 . . . . 5 (𝜑𝑌𝑂)
543ad2ant1 1133 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑌𝑂)
6 dalem.ps . . . . . 6 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
76dalemccea 39670 . . . . 5 (𝜓𝑐𝐴)
873ad2ant3 1135 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
96dalem-ccly 39672 . . . . 5 (𝜓 → ¬ 𝑐 𝑌)
1093ad2ant3 1135 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 𝑌)
11 dalem.l . . . . 5 = (le‘𝐾)
12 dalem.j . . . . 5 = (join‘𝐾)
13 dalem.a . . . . 5 𝐴 = (Atoms‘𝐾)
14 dalem38.o . . . . 5 𝑂 = (LPlanes‘𝐾)
15 eqid 2729 . . . . 5 (LVols‘𝐾) = (LVols‘𝐾)
1611, 12, 13, 14, 15lvoli3 39564 . . . 4 (((𝐾 ∈ HL ∧ 𝑌𝑂𝑐𝐴) ∧ ¬ 𝑐 𝑌) → (𝑌 𝑐) ∈ (LVols‘𝐾))
173, 5, 8, 10, 16syl31anc 1375 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 𝑐) ∈ (LVols‘𝐾))
18 dalem38.m . . . 4 = (meet‘𝐾)
19 dalem38.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
20 dalem38.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
21 dalem38.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
221, 11, 12, 13, 6, 18, 14, 19, 20, 21dalem34 39693 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
23 dalem38.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
241, 11, 12, 13, 6, 18, 14, 19, 20, 23dalem23 39683 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
2511, 12, 13, 15lvolnle3at 39569 . . 3 (((𝐾 ∈ HL ∧ (𝑌 𝑐) ∈ (LVols‘𝐾)) ∧ (𝐼𝐴𝐺𝐴𝑐𝐴)) → ¬ (𝑌 𝑐) ((𝐼 𝐺) 𝑐))
263, 17, 22, 24, 8, 25syl23anc 1379 . 2 ((𝜑𝑌 = 𝑍𝜓) → ¬ (𝑌 𝑐) ((𝐼 𝐺) 𝑐))
27 dalem38.h . . . . . . 7 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
281, 11, 12, 13, 6, 18, 14, 19, 20, 23, 27, 21dalem38 39697 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (((𝐺 𝐻) 𝐼) 𝑐))
291dalemkelat 39611 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
30293ad2ant1 1133 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
311, 11, 12, 13, 6, 18, 14, 19, 20, 27dalem29 39688 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
32 eqid 2729 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
3332, 12, 13hlatjcl 39353 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
343, 24, 31, 33syl3anc 1373 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
3532, 13atbase 39275 . . . . . . . . 9 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
3622, 35syl 17 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
3732, 12latjcl 18380 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
3830, 34, 36, 37syl3anc 1373 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
396, 13dalemcceb 39676 . . . . . . . 8 (𝜓𝑐 ∈ (Base‘𝐾))
40393ad2ant3 1135 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
4132, 11, 12latlej2 18390 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾)) → 𝑐 (((𝐺 𝐻) 𝐼) 𝑐))
4230, 38, 40, 41syl3anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (((𝐺 𝐻) 𝐼) 𝑐))
431, 14dalemyeb 39636 . . . . . . . 8 (𝜑𝑌 ∈ (Base‘𝐾))
44433ad2ant1 1133 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
4532, 12latjcl 18380 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾)) → (((𝐺 𝐻) 𝐼) 𝑐) ∈ (Base‘𝐾))
4630, 38, 40, 45syl3anc 1373 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑐) ∈ (Base‘𝐾))
4732, 11, 12latjle12 18391 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑌 ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾) ∧ (((𝐺 𝐻) 𝐼) 𝑐) ∈ (Base‘𝐾))) → ((𝑌 (((𝐺 𝐻) 𝐼) 𝑐) ∧ 𝑐 (((𝐺 𝐻) 𝐼) 𝑐)) ↔ (𝑌 𝑐) (((𝐺 𝐻) 𝐼) 𝑐)))
4830, 44, 40, 46, 47syl13anc 1374 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝑌 (((𝐺 𝐻) 𝐼) 𝑐) ∧ 𝑐 (((𝐺 𝐻) 𝐼) 𝑐)) ↔ (𝑌 𝑐) (((𝐺 𝐻) 𝐼) 𝑐)))
4928, 42, 48mpbi2and 712 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 𝑐) (((𝐺 𝐻) 𝐼) 𝑐))
5012, 13hlatjrot 39359 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝐺𝐴𝐻𝐴𝐼𝐴)) → ((𝐺 𝐻) 𝐼) = ((𝐼 𝐺) 𝐻))
513, 24, 31, 22, 50syl13anc 1374 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) = ((𝐼 𝐺) 𝐻))
5251oveq1d 7384 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑐) = (((𝐼 𝐺) 𝐻) 𝑐))
5349, 52breqtrd 5128 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 𝑐) (((𝐼 𝐺) 𝐻) 𝑐))
5453adantr 480 . . 3 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝐻 (𝐼 𝐺)) → (𝑌 𝑐) (((𝐼 𝐺) 𝐻) 𝑐))
5532, 13atbase 39275 . . . . . . 7 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
5631, 55syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
5732, 12, 13hlatjcl 39353 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝐼𝐴𝐺𝐴) → (𝐼 𝐺) ∈ (Base‘𝐾))
583, 22, 24, 57syl3anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝐼 𝐺) ∈ (Base‘𝐾))
5932, 11, 12latleeqj2 18393 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝐻 ∈ (Base‘𝐾) ∧ (𝐼 𝐺) ∈ (Base‘𝐾)) → (𝐻 (𝐼 𝐺) ↔ ((𝐼 𝐺) 𝐻) = (𝐼 𝐺)))
6030, 56, 58, 59syl3anc 1373 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝐻 (𝐼 𝐺) ↔ ((𝐼 𝐺) 𝐻) = (𝐼 𝐺)))
6160biimpa 476 . . . 4 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝐻 (𝐼 𝐺)) → ((𝐼 𝐺) 𝐻) = (𝐼 𝐺))
6261oveq1d 7384 . . 3 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝐻 (𝐼 𝐺)) → (((𝐼 𝐺) 𝐻) 𝑐) = ((𝐼 𝐺) 𝑐))
6354, 62breqtrd 5128 . 2 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝐻 (𝐼 𝐺)) → (𝑌 𝑐) ((𝐼 𝐺) 𝑐))
6426, 63mtand 815 1 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐻 (𝐼 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  meetcmee 18253  Latclat 18372  Atomscatm 39249  HLchlt 39336  LPlanesclpl 39479  LVolsclvol 39480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lvols 39487
This theorem is referenced by:  dalem40  39699  dalem41  39700
  Copyright terms: Public domain W3C validator