MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedth3v Structured version   Visualization version   GIF version

Theorem dedth3v 4569
Description: Weak deduction theorem for eliminating a hypothesis with 3 class variables. See comments in dedth2v 4568. (Contributed by NM, 13-Aug-1999.) (Proof shortened by Eric Schmidt, 28-Jul-2009.)
Hypotheses
Ref Expression
dedth3v.1 (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜓𝜒))
dedth3v.2 (𝐵 = if(𝜑, 𝐵, 𝑅) → (𝜒𝜃))
dedth3v.3 (𝐶 = if(𝜑, 𝐶, 𝑆) → (𝜃𝜏))
dedth3v.4 𝜏
Assertion
Ref Expression
dedth3v (𝜑𝜓)

Proof of Theorem dedth3v
StepHypRef Expression
1 dedth3v.1 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜓𝜒))
2 dedth3v.2 . . . 4 (𝐵 = if(𝜑, 𝐵, 𝑅) → (𝜒𝜃))
3 dedth3v.3 . . . 4 (𝐶 = if(𝜑, 𝐶, 𝑆) → (𝜃𝜏))
4 dedth3v.4 . . . 4 𝜏
51, 2, 3, 4dedth3h 4566 . . 3 ((𝜑𝜑𝜑) → 𝜓)
653anidm12 1421 . 2 ((𝜑𝜑) → 𝜓)
76anidms 566 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  ifcif 4505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-if 4506
This theorem is referenced by:  sseliALT  5284
  Copyright terms: Public domain W3C validator