Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dedth2v | Structured version Visualization version GIF version |
Description: Weak deduction theorem for eliminating a hypothesis with 2 class variables. Note: if the hypothesis can be separated into two hypotheses, each with one class variable, then dedth2h 4515 is simpler to use. See also comments in dedth 4514. (Contributed by NM, 13-Aug-1999.) (Proof shortened by Eric Schmidt, 28-Jul-2009.) |
Ref | Expression |
---|---|
dedth2v.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜓 ↔ 𝜒)) |
dedth2v.2 | ⊢ (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒 ↔ 𝜃)) |
dedth2v.3 | ⊢ 𝜃 |
Ref | Expression |
---|---|
dedth2v | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth2v.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜓 ↔ 𝜒)) | |
2 | dedth2v.2 | . . 3 ⊢ (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒 ↔ 𝜃)) | |
3 | dedth2v.3 | . . 3 ⊢ 𝜃 | |
4 | 1, 2, 3 | dedth2h 4515 | . 2 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
5 | 4 | anidms 566 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: ltweuz 13609 omlsi 29667 pjhfo 29969 |
Copyright terms: Public domain | W3C validator |