MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedth2v Structured version   Visualization version   GIF version

Theorem dedth2v 4518
Description: Weak deduction theorem for eliminating a hypothesis with 2 class variables. Note: if the hypothesis can be separated into two hypotheses, each with one class variable, then dedth2h 4515 is simpler to use. See also comments in dedth 4514. (Contributed by NM, 13-Aug-1999.) (Proof shortened by Eric Schmidt, 28-Jul-2009.)
Hypotheses
Ref Expression
dedth2v.1 (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜓𝜒))
dedth2v.2 (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒𝜃))
dedth2v.3 𝜃
Assertion
Ref Expression
dedth2v (𝜑𝜓)

Proof of Theorem dedth2v
StepHypRef Expression
1 dedth2v.1 . . 3 (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜓𝜒))
2 dedth2v.2 . . 3 (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒𝜃))
3 dedth2v.3 . . 3 𝜃
41, 2, 3dedth2h 4515 . 2 ((𝜑𝜑) → 𝜓)
54anidms 566 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  ifcif 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-if 4457
This theorem is referenced by:  ltweuz  13609  omlsi  29667  pjhfo  29969
  Copyright terms: Public domain W3C validator