| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth3h | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h 4538. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth3h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) |
| dedth3h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) |
| dedth3h.3 | ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) |
| dedth3h.4 | ⊢ 𝜁 |
| Ref | Expression |
|---|---|
| dedth3h | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth3h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜓 ∧ 𝜒) → 𝜏))) |
| 3 | dedth3h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) | |
| 4 | dedth3h.3 | . . . 4 ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) | |
| 5 | dedth3h.4 | . . . 4 ⊢ 𝜁 | |
| 6 | 3, 4, 5 | dedth2h 4538 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜏) |
| 7 | 2, 6 | dedth 4537 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 8 | 7 | 3impib 1116 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4479 |
| This theorem is referenced by: dedth3v 4542 faclbnd4lem2 14219 dvdsle 16239 gcdaddm 16454 ipdiri 30792 hvaddcan 31032 hvsubadd 31039 norm3dif 31112 omlsii 31365 chjass 31495 ledi 31502 spansncv 31615 pjcjt2 31654 pjopyth 31682 hoaddass 31744 hocsubdir 31747 hoddi 31952 |
| Copyright terms: Public domain | W3C validator |