![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth3h | Structured version Visualization version GIF version |
Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h 4607. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth3h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) |
dedth3h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) |
dedth3h.3 | ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) |
dedth3h.4 | ⊢ 𝜁 |
Ref | Expression |
---|---|
dedth3h | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth3h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜓 ∧ 𝜒) → 𝜏))) |
3 | dedth3h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) | |
4 | dedth3h.3 | . . . 4 ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) | |
5 | dedth3h.4 | . . . 4 ⊢ 𝜁 | |
6 | 3, 4, 5 | dedth2h 4607 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜏) |
7 | 2, 6 | dedth 4606 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
8 | 7 | 3impib 1116 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 |
This theorem is referenced by: dedth3v 4611 faclbnd4lem2 14343 dvdsle 16358 gcdaddm 16571 ipdiri 30862 hvaddcan 31102 hvsubadd 31109 norm3dif 31182 omlsii 31435 chjass 31565 ledi 31572 spansncv 31685 pjcjt2 31724 pjopyth 31752 hoaddass 31814 hocsubdir 31817 hoddi 32022 |
Copyright terms: Public domain | W3C validator |