![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth3h | Structured version Visualization version GIF version |
Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h 4589. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth3h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) |
dedth3h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) |
dedth3h.3 | ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) |
dedth3h.4 | ⊢ 𝜁 |
Ref | Expression |
---|---|
dedth3h | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth3h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) | |
2 | 1 | imbi2d 339 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜓 ∧ 𝜒) → 𝜏))) |
3 | dedth3h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) | |
4 | dedth3h.3 | . . . 4 ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) | |
5 | dedth3h.4 | . . . 4 ⊢ 𝜁 | |
6 | 3, 4, 5 | dedth2h 4589 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜏) |
7 | 2, 6 | dedth 4588 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
8 | 7 | 3impib 1113 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ifcif 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-if 4531 |
This theorem is referenced by: dedth3v 4593 faclbnd4lem2 14289 dvdsle 16290 gcdaddm 16503 ipdiri 30712 hvaddcan 30952 hvsubadd 30959 norm3dif 31032 omlsii 31285 chjass 31415 ledi 31422 spansncv 31535 pjcjt2 31574 pjopyth 31602 hoaddass 31664 hocsubdir 31667 hoddi 31872 |
Copyright terms: Public domain | W3C validator |