MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedth3h Structured version   Visualization version   GIF version

Theorem dedth3h 4587
Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h 4586. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
dedth3h.1 (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃𝜏))
dedth3h.2 (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏𝜂))
dedth3h.3 (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂𝜁))
dedth3h.4 𝜁
Assertion
Ref Expression
dedth3h ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem dedth3h
StepHypRef Expression
1 dedth3h.1 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃𝜏))
21imbi2d 340 . . 3 (𝐴 = if(𝜑, 𝐴, 𝐷) → (((𝜓𝜒) → 𝜃) ↔ ((𝜓𝜒) → 𝜏)))
3 dedth3h.2 . . . 4 (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏𝜂))
4 dedth3h.3 . . . 4 (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂𝜁))
5 dedth3h.4 . . . 4 𝜁
63, 4, 5dedth2h 4586 . . 3 ((𝜓𝜒) → 𝜏)
72, 6dedth 4585 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
873impib 1116 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  ifcif 4527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-if 4528
This theorem is referenced by:  dedth3v  4590  faclbnd4lem2  14250  dvdsle  16249  gcdaddm  16462  ipdiri  30070  hvaddcan  30310  hvsubadd  30317  norm3dif  30390  omlsii  30643  chjass  30773  ledi  30780  spansncv  30893  pjcjt2  30932  pjopyth  30960  hoaddass  31022  hocsubdir  31025  hoddi  31230
  Copyright terms: Public domain W3C validator