![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth3h | Structured version Visualization version GIF version |
Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h 4529. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth3h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) |
dedth3h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) |
dedth3h.3 | ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) |
dedth3h.4 | ⊢ 𝜁 |
Ref | Expression |
---|---|
dedth3h | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth3h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜓 ∧ 𝜒) → 𝜏))) |
3 | dedth3h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) | |
4 | dedth3h.3 | . . . 4 ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) | |
5 | dedth3h.4 | . . . 4 ⊢ 𝜁 | |
6 | 3, 4, 5 | dedth2h 4529 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜏) |
7 | 2, 6 | dedth 4528 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
8 | 7 | 3impib 1115 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ifcif 4470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-if 4471 |
This theorem is referenced by: dedth3v 4533 faclbnd4lem2 14087 dvdsle 16095 gcdaddm 16308 ipdiri 29324 hvaddcan 29564 hvsubadd 29571 norm3dif 29644 omlsii 29897 chjass 30027 ledi 30034 spansncv 30147 pjcjt2 30186 pjopyth 30214 hoaddass 30276 hocsubdir 30279 hoddi 30484 |
Copyright terms: Public domain | W3C validator |