| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth3h | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h 4551. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth3h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) |
| dedth3h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) |
| dedth3h.3 | ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) |
| dedth3h.4 | ⊢ 𝜁 |
| Ref | Expression |
|---|---|
| dedth3h | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth3h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜓 ∧ 𝜒) → 𝜏))) |
| 3 | dedth3h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) | |
| 4 | dedth3h.3 | . . . 4 ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) | |
| 5 | dedth3h.4 | . . . 4 ⊢ 𝜁 | |
| 6 | 3, 4, 5 | dedth2h 4551 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜏) |
| 7 | 2, 6 | dedth 4550 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 8 | 7 | 3impib 1116 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 |
| This theorem is referenced by: dedth3v 4555 faclbnd4lem2 14266 dvdsle 16287 gcdaddm 16502 ipdiri 30766 hvaddcan 31006 hvsubadd 31013 norm3dif 31086 omlsii 31339 chjass 31469 ledi 31476 spansncv 31589 pjcjt2 31628 pjopyth 31656 hoaddass 31718 hocsubdir 31721 hoddi 31926 |
| Copyright terms: Public domain | W3C validator |