![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth3h | Structured version Visualization version GIF version |
Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h 4588. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth3h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) |
dedth3h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) |
dedth3h.3 | ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) |
dedth3h.4 | ⊢ 𝜁 |
Ref | Expression |
---|---|
dedth3h | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth3h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) | |
2 | 1 | imbi2d 341 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜓 ∧ 𝜒) → 𝜏))) |
3 | dedth3h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) | |
4 | dedth3h.3 | . . . 4 ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) | |
5 | dedth3h.4 | . . . 4 ⊢ 𝜁 | |
6 | 3, 4, 5 | dedth2h 4588 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜏) |
7 | 2, 6 | dedth 4587 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
8 | 7 | 3impib 1117 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4530 |
This theorem is referenced by: dedth3v 4592 faclbnd4lem2 14254 dvdsle 16253 gcdaddm 16466 ipdiri 30114 hvaddcan 30354 hvsubadd 30361 norm3dif 30434 omlsii 30687 chjass 30817 ledi 30824 spansncv 30937 pjcjt2 30976 pjopyth 31004 hoaddass 31066 hocsubdir 31069 hoddi 31274 |
Copyright terms: Public domain | W3C validator |