MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedth3h Structured version   Visualization version   GIF version

Theorem dedth3h 4536
Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h 4535. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
dedth3h.1 (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃𝜏))
dedth3h.2 (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏𝜂))
dedth3h.3 (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂𝜁))
dedth3h.4 𝜁
Assertion
Ref Expression
dedth3h ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem dedth3h
StepHypRef Expression
1 dedth3h.1 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃𝜏))
21imbi2d 340 . . 3 (𝐴 = if(𝜑, 𝐴, 𝐷) → (((𝜓𝜒) → 𝜃) ↔ ((𝜓𝜒) → 𝜏)))
3 dedth3h.2 . . . 4 (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏𝜂))
4 dedth3h.3 . . . 4 (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂𝜁))
5 dedth3h.4 . . . 4 𝜁
63, 4, 5dedth2h 4535 . . 3 ((𝜓𝜒) → 𝜏)
72, 6dedth 4534 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
873impib 1116 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  ifcif 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-if 4476
This theorem is referenced by:  dedth3v  4539  faclbnd4lem2  14201  dvdsle  16221  gcdaddm  16436  ipdiri  30808  hvaddcan  31048  hvsubadd  31055  norm3dif  31128  omlsii  31381  chjass  31511  ledi  31518  spansncv  31631  pjcjt2  31670  pjopyth  31698  hoaddass  31760  hocsubdir  31763  hoddi  31968
  Copyright terms: Public domain W3C validator