| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth3h | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h 4560. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth3h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) |
| dedth3h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) |
| dedth3h.3 | ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) |
| dedth3h.4 | ⊢ 𝜁 |
| Ref | Expression |
|---|---|
| dedth3h | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth3h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜓 ∧ 𝜒) → 𝜏))) |
| 3 | dedth3h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) | |
| 4 | dedth3h.3 | . . . 4 ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) | |
| 5 | dedth3h.4 | . . . 4 ⊢ 𝜁 | |
| 6 | 3, 4, 5 | dedth2h 4560 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜏) |
| 7 | 2, 6 | dedth 4559 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 8 | 7 | 3impib 1116 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 |
| This theorem is referenced by: dedth3v 4564 faclbnd4lem2 14312 dvdsle 16329 gcdaddm 16544 ipdiri 30811 hvaddcan 31051 hvsubadd 31058 norm3dif 31131 omlsii 31384 chjass 31514 ledi 31521 spansncv 31634 pjcjt2 31673 pjopyth 31701 hoaddass 31763 hocsubdir 31766 hoddi 31971 |
| Copyright terms: Public domain | W3C validator |