| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth3h | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h 4535. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth3h.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) |
| dedth3h.2 | ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) |
| dedth3h.3 | ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) |
| dedth3h.4 | ⊢ 𝜁 |
| Ref | Expression |
|---|---|
| dedth3h | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth3h.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜃 ↔ 𝜏)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (((𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜓 ∧ 𝜒) → 𝜏))) |
| 3 | dedth3h.2 | . . . 4 ⊢ (𝐵 = if(𝜓, 𝐵, 𝑅) → (𝜏 ↔ 𝜂)) | |
| 4 | dedth3h.3 | . . . 4 ⊢ (𝐶 = if(𝜒, 𝐶, 𝑆) → (𝜂 ↔ 𝜁)) | |
| 5 | dedth3h.4 | . . . 4 ⊢ 𝜁 | |
| 6 | 3, 4, 5 | dedth2h 4535 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜏) |
| 7 | 2, 6 | dedth 4534 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| 8 | 7 | 3impib 1116 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ifcif 4475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-if 4476 |
| This theorem is referenced by: dedth3v 4539 faclbnd4lem2 14201 dvdsle 16221 gcdaddm 16436 ipdiri 30808 hvaddcan 31048 hvsubadd 31055 norm3dif 31128 omlsii 31381 chjass 31511 ledi 31518 spansncv 31631 pjcjt2 31670 pjopyth 31698 hoaddass 31760 hocsubdir 31763 hoddi 31968 |
| Copyright terms: Public domain | W3C validator |