Proof of Theorem sseliALT
| Step | Hyp | Ref
| Expression |
| 1 | | biidd 262 |
. 2
⊢ (𝐴 = if(𝐶 ∈ 𝐴, 𝐴, {∅}) → (𝐶 ∈ 𝐵 ↔ 𝐶 ∈ 𝐵)) |
| 2 | | eleq2 2830 |
. 2
⊢ (𝐵 = if(𝐶 ∈ 𝐴, 𝐵, {∅}) → (𝐶 ∈ 𝐵 ↔ 𝐶 ∈ if(𝐶 ∈ 𝐴, 𝐵, {∅}))) |
| 3 | | eleq1 2829 |
. 2
⊢ (𝐶 = if(𝐶 ∈ 𝐴, 𝐶, ∅) → (𝐶 ∈ if(𝐶 ∈ 𝐴, 𝐵, {∅}) ↔ if(𝐶 ∈ 𝐴, 𝐶, ∅) ∈ if(𝐶 ∈ 𝐴, 𝐵, {∅}))) |
| 4 | | sseq1 4009 |
. . . 4
⊢ (𝐴 = if(𝐶 ∈ 𝐴, 𝐴, {∅}) → (𝐴 ⊆ 𝐵 ↔ if(𝐶 ∈ 𝐴, 𝐴, {∅}) ⊆ 𝐵)) |
| 5 | | sseq2 4010 |
. . . 4
⊢ (𝐵 = if(𝐶 ∈ 𝐴, 𝐵, {∅}) → (if(𝐶 ∈ 𝐴, 𝐴, {∅}) ⊆ 𝐵 ↔ if(𝐶 ∈ 𝐴, 𝐴, {∅}) ⊆ if(𝐶 ∈ 𝐴, 𝐵, {∅}))) |
| 6 | | biidd 262 |
. . . 4
⊢ (𝐶 = if(𝐶 ∈ 𝐴, 𝐶, ∅) → (if(𝐶 ∈ 𝐴, 𝐴, {∅}) ⊆ if(𝐶 ∈ 𝐴, 𝐵, {∅}) ↔ if(𝐶 ∈ 𝐴, 𝐴, {∅}) ⊆ if(𝐶 ∈ 𝐴, 𝐵, {∅}))) |
| 7 | | sseq1 4009 |
. . . 4
⊢
({∅} = if(𝐶
∈ 𝐴, 𝐴, {∅}) → ({∅} ⊆
{∅} ↔ if(𝐶
∈ 𝐴, 𝐴, {∅}) ⊆
{∅})) |
| 8 | | sseq2 4010 |
. . . 4
⊢
({∅} = if(𝐶
∈ 𝐴, 𝐵, {∅}) → (if(𝐶 ∈ 𝐴, 𝐴, {∅}) ⊆ {∅} ↔
if(𝐶 ∈ 𝐴, 𝐴, {∅}) ⊆ if(𝐶 ∈ 𝐴, 𝐵, {∅}))) |
| 9 | | biidd 262 |
. . . 4
⊢ (∅
= if(𝐶 ∈ 𝐴, 𝐶, ∅) → (if(𝐶 ∈ 𝐴, 𝐴, {∅}) ⊆ if(𝐶 ∈ 𝐴, 𝐵, {∅}) ↔ if(𝐶 ∈ 𝐴, 𝐴, {∅}) ⊆ if(𝐶 ∈ 𝐴, 𝐵, {∅}))) |
| 10 | | sseliALT.1 |
. . . 4
⊢ 𝐴 ⊆ 𝐵 |
| 11 | | ssid 4006 |
. . . 4
⊢ {∅}
⊆ {∅} |
| 12 | 4, 5, 6, 7, 8, 9, 10, 11 | keephyp3v 4599 |
. . 3
⊢ if(𝐶 ∈ 𝐴, 𝐴, {∅}) ⊆ if(𝐶 ∈ 𝐴, 𝐵, {∅}) |
| 13 | | eleq2 2830 |
. . . 4
⊢ (𝐴 = if(𝐶 ∈ 𝐴, 𝐴, {∅}) → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ if(𝐶 ∈ 𝐴, 𝐴, {∅}))) |
| 14 | | biidd 262 |
. . . 4
⊢ (𝐵 = if(𝐶 ∈ 𝐴, 𝐵, {∅}) → (𝐶 ∈ if(𝐶 ∈ 𝐴, 𝐴, {∅}) ↔ 𝐶 ∈ if(𝐶 ∈ 𝐴, 𝐴, {∅}))) |
| 15 | | eleq1 2829 |
. . . 4
⊢ (𝐶 = if(𝐶 ∈ 𝐴, 𝐶, ∅) → (𝐶 ∈ if(𝐶 ∈ 𝐴, 𝐴, {∅}) ↔ if(𝐶 ∈ 𝐴, 𝐶, ∅) ∈ if(𝐶 ∈ 𝐴, 𝐴, {∅}))) |
| 16 | | eleq2 2830 |
. . . 4
⊢
({∅} = if(𝐶
∈ 𝐴, 𝐴, {∅}) → (∅ ∈
{∅} ↔ ∅ ∈ if(𝐶 ∈ 𝐴, 𝐴, {∅}))) |
| 17 | | biidd 262 |
. . . 4
⊢
({∅} = if(𝐶
∈ 𝐴, 𝐵, {∅}) → (∅ ∈ if(𝐶 ∈ 𝐴, 𝐴, {∅}) ↔ ∅ ∈ if(𝐶 ∈ 𝐴, 𝐴, {∅}))) |
| 18 | | eleq1 2829 |
. . . 4
⊢ (∅
= if(𝐶 ∈ 𝐴, 𝐶, ∅) → (∅ ∈ if(𝐶 ∈ 𝐴, 𝐴, {∅}) ↔ if(𝐶 ∈ 𝐴, 𝐶, ∅) ∈ if(𝐶 ∈ 𝐴, 𝐴, {∅}))) |
| 19 | | 0ex 5307 |
. . . . 5
⊢ ∅
∈ V |
| 20 | 19 | snid 4662 |
. . . 4
⊢ ∅
∈ {∅} |
| 21 | 13, 14, 15, 16, 17, 18, 20 | elimhyp3v 4593 |
. . 3
⊢ if(𝐶 ∈ 𝐴, 𝐶, ∅) ∈ if(𝐶 ∈ 𝐴, 𝐴, {∅}) |
| 22 | 12, 21 | sselii 3980 |
. 2
⊢ if(𝐶 ∈ 𝐴, 𝐶, ∅) ∈ if(𝐶 ∈ 𝐴, 𝐵, {∅}) |
| 23 | 1, 2, 3, 22 | dedth3v 4589 |
1
⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |