![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3775 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3777 instead of df-sbc 3775. (dfsbcq2 3777 is needed because unlike Quine we do not overload the df-sb 2061 syntax.) As a consequence of these theorems, we can derive sbc8g 3782, which is a weaker version of df-sbc 3775 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3782, so we will allow direct use of df-sbc 3775 after Theorem sbc2or 3783 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2816 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3775 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3775 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 {cab 2704 [wsbc 3774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2719 df-clel 2805 df-sbc 3775 |
This theorem is referenced by: sbceq1d 3779 sbc8g 3782 spsbc 3787 sbccow 3797 sbcco 3800 sbcco2 3801 sbcie2g 3816 elrabsf 3822 eqsbc1 3823 csbeq1 3892 cbvralcsf 3934 sbcnestgfw 4414 sbcco3gw 4418 sbcnestgf 4419 sbcco3g 4423 csbie2df 4436 reusngf 4672 reuprg0 4702 sbcop 5485 reuop 6291 ralrnmptw 7098 ralrnmpt 7100 tfindes 7861 findcard2 9180 findcard2OLD 9300 ac6sfi 9303 indexfi 9376 nn1suc 12256 uzind4s2 12915 wrdind 14696 wrd2ind 14697 prmind2 16647 mndind 18771 elmptrab 23718 isfildlem 23748 ifeqeqx 32318 wrdt2ind 32656 bnj609 34484 bnj601 34487 sdclem2 37150 fdc1 37154 sbccom2 37533 sbccom2f 37534 sbccom2fi 37535 elimhyps 38370 dedths 38371 elimhyps2 38373 dedths2 38374 lshpkrlem3 38521 rexrabdioph 42136 rexfrabdioph 42137 2rexfrabdioph 42138 3rexfrabdioph 42139 4rexfrabdioph 42140 6rexfrabdioph 42141 7rexfrabdioph 42142 2nn0ind 42288 zindbi 42289 axfrege52c 43240 frege58c 43274 frege92 43308 2sbc6g 43775 2sbc5g 43776 pm14.122b 43783 pm14.24 43792 iotavalsb 43793 sbiota1 43794 fvsb 43812 or2expropbilem1 46337 ich2exprop 46734 reupr 46785 |
Copyright terms: Public domain | W3C validator |