![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3792 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3794 instead of df-sbc 3792. (dfsbcq2 3794 is needed because unlike Quine we do not overload the df-sb 2063 syntax.) As a consequence of these theorems, we can derive sbc8g 3799, which is a weaker version of df-sbc 3792 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3799, so we will allow direct use of df-sbc 3792 after Theorem sbc2or 3800 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3792 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3792 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {cab 2712 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 df-sbc 3792 |
This theorem is referenced by: sbceq1d 3796 sbc8g 3799 spsbc 3804 sbccow 3814 sbcco 3817 sbcco2 3818 sbcie2g 3834 elrabsf 3840 eqsbc1 3841 csbeq1 3911 cbvralcsf 3953 sbcnestgfw 4427 sbcco3gw 4431 sbcnestgf 4432 sbcco3g 4436 csbie2df 4449 reusngf 4679 reuprg0 4707 sbcop 5500 reuop 6315 ralrnmptw 7114 ralrnmpt 7116 tfindes 7884 findcard2 9203 ac6sfi 9318 indexfi 9398 nn1suc 12286 uzind4s2 12949 wrdind 14757 wrd2ind 14758 prmind2 16719 mndind 18854 elmptrab 23851 isfildlem 23881 ifeqeqx 32563 wrdt2ind 32923 bnj609 34910 bnj601 34913 weiunlem2 36446 sdclem2 37729 fdc1 37733 sbccom2 38112 sbccom2f 38113 sbccom2fi 38114 elimhyps 38943 dedths 38944 elimhyps2 38946 dedths2 38947 lshpkrlem3 39094 rexrabdioph 42782 rexfrabdioph 42783 2rexfrabdioph 42784 3rexfrabdioph 42785 4rexfrabdioph 42786 6rexfrabdioph 42787 7rexfrabdioph 42788 2nn0ind 42934 zindbi 42935 axfrege52c 43877 frege58c 43911 frege92 43945 2sbc6g 44411 2sbc5g 44412 pm14.122b 44419 pm14.24 44428 iotavalsb 44429 sbiota1 44430 fvsb 44448 or2expropbilem1 46982 ich2exprop 47396 reupr 47447 |
Copyright terms: Public domain | W3C validator |