| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version | ||
| Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3745 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3747 instead of df-sbc 3745. (dfsbcq2 3747 is needed because unlike Quine we do not overload the df-sb 2066 syntax.) As a consequence of these theorems, we can derive sbc8g 3752, which is a weaker version of df-sbc 3745 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3752, so we will allow direct use of df-sbc 3745 after Theorem sbc2or 3753 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-sbc 3745 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 3 | df-sbc 3745 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-sbc 3745 |
| This theorem is referenced by: sbceq1d 3749 sbc8g 3752 spsbc 3757 sbccow 3767 sbcco 3770 sbcco2 3771 sbcie2g 3785 elrabsf 3790 eqsbc1 3791 csbeq1 3856 cbvralcsf 3895 sbcnestgfw 4374 sbcco3gw 4378 sbcnestgf 4379 sbcco3g 4383 csbie2df 4396 reusngf 4628 reuprg0 4656 sbcop 5436 reuop 6245 ralrnmptw 7032 ralrnmpt 7034 tfindes 7803 findcard2 9088 ac6sfi 9189 indexfi 9269 nn1suc 12168 uzind4s2 12828 wrdind 14646 wrd2ind 14647 prmind2 16614 mndind 18720 elmptrab 23730 isfildlem 23760 ifeqeqx 32504 wrdt2ind 32908 bnj609 34883 bnj601 34886 weiunlem2 36436 sdclem2 37721 fdc1 37725 sbccom2 38104 sbccom2f 38105 sbccom2fi 38106 elimhyps 38939 dedths 38940 elimhyps2 38942 dedths2 38943 lshpkrlem3 39090 rexrabdioph 42767 rexfrabdioph 42768 2rexfrabdioph 42769 3rexfrabdioph 42770 4rexfrabdioph 42771 6rexfrabdioph 42772 7rexfrabdioph 42773 2nn0ind 42918 zindbi 42919 axfrege52c 43860 frege58c 43894 frege92 43928 2sbc6g 44388 2sbc5g 44389 pm14.122b 44396 pm14.24 44405 iotavalsb 44406 sbiota1 44407 fvsb 44425 or2expropbilem1 47017 ich2exprop 47456 reupr 47507 |
| Copyright terms: Public domain | W3C validator |