![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3779 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3781 instead of df-sbc 3779. (dfsbcq2 3781 is needed because unlike Quine we do not overload the df-sb 2069 syntax.) As a consequence of these theorems, we can derive sbc8g 3786, which is a weaker version of df-sbc 3779 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3786, so we will allow direct use of df-sbc 3779 after Theorem sbc2or 3787 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2822 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3779 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3779 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 {cab 2710 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-clel 2811 df-sbc 3779 |
This theorem is referenced by: sbceq1d 3783 sbc8g 3786 spsbc 3791 sbccow 3801 sbcco 3804 sbcco2 3805 sbcie2g 3820 elrabsf 3826 eqsbc1 3827 csbeq1 3897 cbvralcsf 3939 sbcnestgfw 4419 sbcco3gw 4423 sbcnestgf 4424 sbcco3g 4428 csbie2df 4441 reusngf 4677 reuprg0 4707 sbcop 5490 reuop 6293 ralrnmptw 7096 ralrnmpt 7098 tfindes 7852 findcard2 9164 findcard2OLD 9284 ac6sfi 9287 indexfi 9360 nn1suc 12234 uzind4s2 12893 wrdind 14672 wrd2ind 14673 prmind2 16622 mndind 18709 elmptrab 23331 isfildlem 23361 ifeqeqx 31774 wrdt2ind 32117 bnj609 33928 bnj601 33931 sdclem2 36610 fdc1 36614 sbccom2 36993 sbccom2f 36994 sbccom2fi 36995 elimhyps 37831 dedths 37832 elimhyps2 37834 dedths2 37835 lshpkrlem3 37982 rexrabdioph 41532 rexfrabdioph 41533 2rexfrabdioph 41534 3rexfrabdioph 41535 4rexfrabdioph 41536 6rexfrabdioph 41537 7rexfrabdioph 41538 2nn0ind 41684 zindbi 41685 axfrege52c 42638 frege58c 42672 frege92 42706 2sbc6g 43174 2sbc5g 43175 pm14.122b 43182 pm14.24 43191 iotavalsb 43192 sbiota1 43193 fvsb 43211 or2expropbilem1 45742 ich2exprop 46139 reupr 46190 |
Copyright terms: Public domain | W3C validator |