![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3775 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3777 instead of df-sbc 3775. (dfsbcq2 3777 is needed because unlike Quine we do not overload the df-sb 2060 syntax.) As a consequence of these theorems, we can derive sbc8g 3782, which is a weaker version of df-sbc 3775 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3782, so we will allow direct use of df-sbc 3775 after Theorem sbc2or 3783 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2813 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3775 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3775 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 {cab 2702 [wsbc 3774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-cleq 2717 df-clel 2802 df-sbc 3775 |
This theorem is referenced by: sbceq1d 3779 sbc8g 3782 spsbc 3787 sbccow 3797 sbcco 3800 sbcco2 3801 sbcie2g 3817 elrabsf 3823 eqsbc1 3824 csbeq1 3893 cbvralcsf 3935 sbcnestgfw 4419 sbcco3gw 4423 sbcnestgf 4424 sbcco3g 4428 csbie2df 4441 reusngf 4677 reuprg0 4707 sbcop 5490 reuop 6297 ralrnmptw 7101 ralrnmpt 7103 tfindes 7866 findcard2 9187 findcard2OLD 9307 ac6sfi 9310 indexfi 9384 nn1suc 12264 uzind4s2 12923 wrdind 14704 wrd2ind 14705 prmind2 16655 mndind 18784 elmptrab 23761 isfildlem 23791 ifeqeqx 32390 wrdt2ind 32731 bnj609 34618 bnj601 34621 sdclem2 37285 fdc1 37289 sbccom2 37668 sbccom2f 37669 sbccom2fi 37670 elimhyps 38502 dedths 38503 elimhyps2 38505 dedths2 38506 lshpkrlem3 38653 rexrabdioph 42279 rexfrabdioph 42280 2rexfrabdioph 42281 3rexfrabdioph 42282 4rexfrabdioph 42283 6rexfrabdioph 42284 7rexfrabdioph 42285 2nn0ind 42431 zindbi 42432 axfrege52c 43382 frege58c 43416 frege92 43450 2sbc6g 43917 2sbc5g 43918 pm14.122b 43925 pm14.24 43934 iotavalsb 43935 sbiota1 43936 fvsb 43954 or2expropbilem1 46477 ich2exprop 46874 reupr 46925 |
Copyright terms: Public domain | W3C validator |