![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3805 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3807 instead of df-sbc 3805. (dfsbcq2 3807 is needed because unlike Quine we do not overload the df-sb 2065 syntax.) As a consequence of these theorems, we can derive sbc8g 3812, which is a weaker version of df-sbc 3805 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3812, so we will allow direct use of df-sbc 3805 after Theorem sbc2or 3813 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3805 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3805 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: sbceq1d 3809 sbc8g 3812 spsbc 3817 sbccow 3827 sbcco 3830 sbcco2 3831 sbcie2g 3847 elrabsf 3853 eqsbc1 3854 csbeq1 3924 cbvralcsf 3966 sbcnestgfw 4444 sbcco3gw 4448 sbcnestgf 4449 sbcco3g 4453 csbie2df 4466 reusngf 4696 reuprg0 4727 sbcop 5509 reuop 6324 ralrnmptw 7128 ralrnmpt 7130 tfindes 7900 findcard2 9230 ac6sfi 9348 indexfi 9430 nn1suc 12315 uzind4s2 12974 wrdind 14770 wrd2ind 14771 prmind2 16732 mndind 18863 elmptrab 23856 isfildlem 23886 ifeqeqx 32565 wrdt2ind 32920 bnj609 34893 bnj601 34896 weiunlem2 36429 sdclem2 37702 fdc1 37706 sbccom2 38085 sbccom2f 38086 sbccom2fi 38087 elimhyps 38917 dedths 38918 elimhyps2 38920 dedths2 38921 lshpkrlem3 39068 rexrabdioph 42750 rexfrabdioph 42751 2rexfrabdioph 42752 3rexfrabdioph 42753 4rexfrabdioph 42754 6rexfrabdioph 42755 7rexfrabdioph 42756 2nn0ind 42902 zindbi 42903 axfrege52c 43849 frege58c 43883 frege92 43917 2sbc6g 44384 2sbc5g 44385 pm14.122b 44392 pm14.24 44401 iotavalsb 44402 sbiota1 44403 fvsb 44421 or2expropbilem1 46947 ich2exprop 47345 reupr 47396 |
Copyright terms: Public domain | W3C validator |