| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version | ||
| Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3740 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3742 instead of df-sbc 3740. (dfsbcq2 3742 is needed because unlike Quine we do not overload the df-sb 2067 syntax.) As a consequence of these theorems, we can derive sbc8g 3747, which is a weaker version of df-sbc 3740 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3747, so we will allow direct use of df-sbc 3740 after Theorem sbc2or 3748 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-sbc 3740 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 3 | df-sbc 3740 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 {cab 2708 [wsbc 3739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2722 df-clel 2804 df-sbc 3740 |
| This theorem is referenced by: sbceq1d 3744 sbc8g 3747 spsbc 3752 sbccow 3762 sbcco 3765 sbcco2 3766 sbcie2g 3780 elrabsf 3785 eqsbc1 3786 csbeq1 3851 cbvralcsf 3890 sbcnestgfw 4369 sbcco3gw 4373 sbcnestgf 4374 sbcco3g 4378 csbie2df 4391 reusngf 4625 reuprg0 4653 sbcop 5427 reuop 6236 ralrnmptw 7022 ralrnmpt 7024 tfindes 7788 findcard2 9069 ac6sfi 9163 indexfi 9239 nn1suc 12139 uzind4s2 12799 wrdind 14621 wrd2ind 14622 prmind2 16588 mndind 18728 elmptrab 23735 isfildlem 23765 ifeqeqx 32512 wrdt2ind 32924 bnj609 34919 bnj601 34922 weiunlem2 36476 sdclem2 37761 fdc1 37765 sbccom2 38144 sbccom2f 38145 sbccom2fi 38146 elimhyps 38979 dedths 38980 elimhyps2 38982 dedths2 38983 lshpkrlem3 39130 rexrabdioph 42806 rexfrabdioph 42807 2rexfrabdioph 42808 3rexfrabdioph 42809 4rexfrabdioph 42810 6rexfrabdioph 42811 7rexfrabdioph 42812 2nn0ind 42957 zindbi 42958 axfrege52c 43899 frege58c 43933 frege92 43967 2sbc6g 44427 2sbc5g 44428 pm14.122b 44435 pm14.24 44444 iotavalsb 44445 sbiota1 44446 fvsb 44463 or2expropbilem1 47042 ich2exprop 47481 reupr 47532 |
| Copyright terms: Public domain | W3C validator |