![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3779 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3781 instead of df-sbc 3779. (dfsbcq2 3781 is needed because unlike Quine we do not overload the df-sb 2066 syntax.) As a consequence of these theorems, we can derive sbc8g 3786, which is a weaker version of df-sbc 3779 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3786, so we will allow direct use of df-sbc 3779 after Theorem sbc2or 3787 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2819 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3779 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3779 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 {cab 2707 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-clel 2808 df-sbc 3779 |
This theorem is referenced by: sbceq1d 3783 sbc8g 3786 spsbc 3791 sbccow 3801 sbcco 3804 sbcco2 3805 sbcie2g 3820 elrabsf 3826 eqsbc1 3827 csbeq1 3897 cbvralcsf 3939 sbcnestgfw 4419 sbcco3gw 4423 sbcnestgf 4424 sbcco3g 4428 csbie2df 4441 reusngf 4677 reuprg0 4707 sbcop 5490 reuop 6293 ralrnmptw 7096 ralrnmpt 7098 tfindes 7856 findcard2 9168 findcard2OLD 9288 ac6sfi 9291 indexfi 9364 nn1suc 12240 uzind4s2 12899 wrdind 14678 wrd2ind 14679 prmind2 16628 mndind 18747 elmptrab 23553 isfildlem 23583 ifeqeqx 32039 wrdt2ind 32382 bnj609 34224 bnj601 34227 sdclem2 36915 fdc1 36919 sbccom2 37298 sbccom2f 37299 sbccom2fi 37300 elimhyps 38136 dedths 38137 elimhyps2 38139 dedths2 38140 lshpkrlem3 38287 rexrabdioph 41836 rexfrabdioph 41837 2rexfrabdioph 41838 3rexfrabdioph 41839 4rexfrabdioph 41840 6rexfrabdioph 41841 7rexfrabdioph 41842 2nn0ind 41988 zindbi 41989 axfrege52c 42942 frege58c 42976 frege92 43010 2sbc6g 43478 2sbc5g 43479 pm14.122b 43486 pm14.24 43495 iotavalsb 43496 sbiota1 43497 fvsb 43515 or2expropbilem1 46042 ich2exprop 46439 reupr 46490 |
Copyright terms: Public domain | W3C validator |