| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version | ||
| Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3771 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3773 instead of df-sbc 3771. (dfsbcq2 3773 is needed because unlike Quine we do not overload the df-sb 2066 syntax.) As a consequence of these theorems, we can derive sbc8g 3778, which is a weaker version of df-sbc 3771 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3778, so we will allow direct use of df-sbc 3771 after Theorem sbc2or 3779 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2823 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-sbc 3771 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 3 | df-sbc 3771 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2714 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: sbceq1d 3775 sbc8g 3778 spsbc 3783 sbccow 3793 sbcco 3796 sbcco2 3797 sbcie2g 3811 elrabsf 3816 eqsbc1 3817 csbeq1 3882 cbvralcsf 3921 sbcnestgfw 4401 sbcco3gw 4405 sbcnestgf 4406 sbcco3g 4410 csbie2df 4423 reusngf 4655 reuprg0 4683 sbcop 5469 reuop 6287 ralrnmptw 7089 ralrnmpt 7091 tfindes 7863 findcard2 9183 ac6sfi 9297 indexfi 9377 nn1suc 12267 uzind4s2 12930 wrdind 14745 wrd2ind 14746 prmind2 16709 mndind 18811 elmptrab 23770 isfildlem 23800 ifeqeqx 32528 wrdt2ind 32934 bnj609 34953 bnj601 34956 weiunlem2 36486 sdclem2 37771 fdc1 37775 sbccom2 38154 sbccom2f 38155 sbccom2fi 38156 elimhyps 38984 dedths 38985 elimhyps2 38987 dedths2 38988 lshpkrlem3 39135 rexrabdioph 42792 rexfrabdioph 42793 2rexfrabdioph 42794 3rexfrabdioph 42795 4rexfrabdioph 42796 6rexfrabdioph 42797 7rexfrabdioph 42798 2nn0ind 42944 zindbi 42945 axfrege52c 43886 frege58c 43920 frege92 43954 2sbc6g 44414 2sbc5g 44415 pm14.122b 44422 pm14.24 44431 iotavalsb 44432 sbiota1 44433 fvsb 44451 or2expropbilem1 47041 ich2exprop 47465 reupr 47516 |
| Copyright terms: Public domain | W3C validator |