Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3712 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3714 instead of df-sbc 3712. (dfsbcq2 3714 is needed because unlike Quine we do not overload the df-sb 2069 syntax.) As a consequence of these theorems, we can derive sbc8g 3719, which is a weaker version of df-sbc 3712 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3719, so we will allow direct use of df-sbc 3712 after Theorem sbc2or 3720 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3712 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3712 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: sbceq1d 3716 sbc8g 3719 spsbc 3724 sbccow 3734 sbcco 3737 sbcco2 3738 sbcie2g 3753 elrabsf 3759 eqsbc1 3760 csbeq1 3831 cbvralcsf 3873 sbcnestgfw 4349 sbcco3gw 4353 sbcnestgf 4354 sbcco3g 4358 csbie2df 4371 reusngf 4605 reuprg0 4635 sbcop 5397 reuop 6185 ralrnmptw 6952 ralrnmpt 6954 tfindes 7684 findcard2 8909 findcard2OLD 8986 ac6sfi 8988 indexfi 9057 nn1suc 11925 uzind4s2 12578 wrdind 14363 wrd2ind 14364 prmind2 16318 mndind 18381 elmptrab 22886 isfildlem 22916 ifeqeqx 30786 wrdt2ind 31127 bnj609 32797 bnj601 32800 sdclem2 35827 fdc1 35831 sbccom2 36210 sbccom2f 36211 sbccom2fi 36212 elimhyps 36902 dedths 36903 elimhyps2 36905 dedths2 36906 lshpkrlem3 37053 rexrabdioph 40532 rexfrabdioph 40533 2rexfrabdioph 40534 3rexfrabdioph 40535 4rexfrabdioph 40536 6rexfrabdioph 40537 7rexfrabdioph 40538 2nn0ind 40683 zindbi 40684 axfrege52c 41384 frege58c 41418 frege92 41452 2sbc6g 41922 2sbc5g 41923 pm14.122b 41930 pm14.24 41939 iotavalsb 41940 sbiota1 41941 fvsb 41959 or2expropbilem1 44413 ich2exprop 44811 reupr 44862 |
Copyright terms: Public domain | W3C validator |