| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version | ||
| Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3739 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3741 instead of df-sbc 3739. (dfsbcq2 3741 is needed because unlike Quine we do not overload the df-sb 2068 syntax.) As a consequence of these theorems, we can derive sbc8g 3746, which is a weaker version of df-sbc 3739 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3746, so we will allow direct use of df-sbc 3739 after Theorem sbc2or 3747 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2821 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-sbc 3739 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 3 | df-sbc 3739 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {cab 2711 [wsbc 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-clel 2808 df-sbc 3739 |
| This theorem is referenced by: sbceq1d 3743 sbc8g 3746 spsbc 3751 sbccow 3761 sbcco 3764 sbcco2 3765 sbcie2g 3779 elrabsf 3784 eqsbc1 3785 csbeq1 3850 cbvralcsf 3889 sbcnestgfw 4372 sbcco3gw 4376 sbcnestgf 4377 sbcco3g 4381 csbie2df 4394 reusngf 4628 reuprg0 4656 sbcop 5434 reuop 6248 ralrnmptw 7036 ralrnmpt 7038 tfindes 7802 findcard2 9084 ac6sfi 9178 indexfi 9254 nn1suc 12157 uzind4s2 12817 wrdind 14639 wrd2ind 14640 prmind2 16606 mndind 18746 elmptrab 23752 isfildlem 23782 ifeqeqx 32533 wrdt2ind 32945 bnj609 34940 bnj601 34943 weiunlem2 36518 sdclem2 37792 fdc1 37796 sbccom2 38175 sbccom2f 38176 sbccom2fi 38177 elimhyps 39070 dedths 39071 elimhyps2 39073 dedths2 39074 lshpkrlem3 39221 rexrabdioph 42901 rexfrabdioph 42902 2rexfrabdioph 42903 3rexfrabdioph 42904 4rexfrabdioph 42905 6rexfrabdioph 42906 7rexfrabdioph 42907 2nn0ind 43052 zindbi 43053 axfrege52c 43994 frege58c 44028 frege92 44062 2sbc6g 44522 2sbc5g 44523 pm14.122b 44530 pm14.24 44539 iotavalsb 44540 sbiota1 44541 fvsb 44558 or2expropbilem1 47146 ich2exprop 47585 reupr 47636 |
| Copyright terms: Public domain | W3C validator |