Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3718 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3720 instead of df-sbc 3718. (dfsbcq2 3720 is needed because unlike Quine we do not overload the df-sb 2069 syntax.) As a consequence of these theorems, we can derive sbc8g 3725, which is a weaker version of df-sbc 3718 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3725, so we will allow direct use of df-sbc 3718 after Theorem sbc2or 3726 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3718 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3718 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2107 {cab 2716 [wsbc 3717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-clel 2817 df-sbc 3718 |
This theorem is referenced by: sbceq1d 3722 sbc8g 3725 spsbc 3730 sbccow 3740 sbcco 3743 sbcco2 3744 sbcie2g 3759 elrabsf 3765 eqsbc1 3766 csbeq1 3836 cbvralcsf 3878 sbcnestgfw 4353 sbcco3gw 4357 sbcnestgf 4358 sbcco3g 4362 csbie2df 4375 reusngf 4609 reuprg0 4639 sbcop 5404 reuop 6200 ralrnmptw 6979 ralrnmpt 6981 tfindes 7718 findcard2 8956 findcard2OLD 9065 ac6sfi 9067 indexfi 9136 nn1suc 12004 uzind4s2 12658 wrdind 14444 wrd2ind 14445 prmind2 16399 mndind 18475 elmptrab 22987 isfildlem 23017 ifeqeqx 30894 wrdt2ind 31234 bnj609 32906 bnj601 32909 sdclem2 35909 fdc1 35913 sbccom2 36292 sbccom2f 36293 sbccom2fi 36294 elimhyps 36982 dedths 36983 elimhyps2 36985 dedths2 36986 lshpkrlem3 37133 rexrabdioph 40623 rexfrabdioph 40624 2rexfrabdioph 40625 3rexfrabdioph 40626 4rexfrabdioph 40627 6rexfrabdioph 40628 7rexfrabdioph 40629 2nn0ind 40774 zindbi 40775 axfrege52c 41502 frege58c 41536 frege92 41570 2sbc6g 42040 2sbc5g 42041 pm14.122b 42048 pm14.24 42057 iotavalsb 42058 sbiota1 42059 fvsb 42077 or2expropbilem1 44537 ich2exprop 44934 reupr 44985 |
Copyright terms: Public domain | W3C validator |