Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3695 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3697 instead of df-sbc 3695. (dfsbcq2 3697 is needed because unlike Quine we do not overload the df-sb 2071 syntax.) As a consequence of these theorems, we can derive sbc8g 3702, which is a weaker version of df-sbc 3695 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3702, so we will allow direct use of df-sbc 3695 after Theorem sbc2or 3703 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2825 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3695 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3695 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 317 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 {cab 2714 [wsbc 3694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2729 df-clel 2816 df-sbc 3695 |
This theorem is referenced by: sbceq1d 3699 sbc8g 3702 spsbc 3707 sbccow 3717 sbcco 3720 sbcco2 3721 sbcie2g 3736 elrabsf 3742 eqsbc3 3743 csbeq1 3814 cbvralcsf 3856 sbcnestgfw 4333 sbcco3gw 4337 sbcnestgf 4338 sbcco3g 4342 csbie2df 4355 reusngf 4588 reuprg0 4618 sbcop 5372 reuop 6156 ralrnmptw 6913 ralrnmpt 6915 tfindes 7641 findcard2 8842 findcard2OLD 8913 ac6sfi 8915 indexfi 8984 nn1suc 11852 uzind4s2 12505 wrdind 14287 wrd2ind 14288 prmind2 16242 mndind 18254 elmptrab 22724 isfildlem 22754 ifeqeqx 30604 wrdt2ind 30945 bnj609 32610 bnj601 32613 sdclem2 35637 fdc1 35641 sbccom2 36020 sbccom2f 36021 sbccom2fi 36022 elimhyps 36712 dedths 36713 elimhyps2 36715 dedths2 36716 lshpkrlem3 36863 rexrabdioph 40319 rexfrabdioph 40320 2rexfrabdioph 40321 3rexfrabdioph 40322 4rexfrabdioph 40323 6rexfrabdioph 40324 7rexfrabdioph 40325 2nn0ind 40470 zindbi 40471 axfrege52c 41172 frege58c 41206 frege92 41240 2sbc6g 41706 2sbc5g 41707 pm14.122b 41714 pm14.24 41723 iotavalsb 41724 sbiota1 41725 fvsb 41743 or2expropbilem1 44198 ich2exprop 44596 reupr 44647 |
Copyright terms: Public domain | W3C validator |