![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3778 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3780 instead of df-sbc 3778. (dfsbcq2 3780 is needed because unlike Quine we do not overload the df-sb 2068 syntax.) As a consequence of these theorems, we can derive sbc8g 3785, which is a weaker version of df-sbc 3778 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3785, so we will allow direct use of df-sbc 3778 after Theorem sbc2or 3786 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2821 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3778 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3778 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2709 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-clel 2810 df-sbc 3778 |
This theorem is referenced by: sbceq1d 3782 sbc8g 3785 spsbc 3790 sbccow 3800 sbcco 3803 sbcco2 3804 sbcie2g 3819 elrabsf 3825 eqsbc1 3826 csbeq1 3896 cbvralcsf 3938 sbcnestgfw 4418 sbcco3gw 4422 sbcnestgf 4423 sbcco3g 4427 csbie2df 4440 reusngf 4676 reuprg0 4706 sbcop 5489 reuop 6292 ralrnmptw 7095 ralrnmpt 7097 tfindes 7851 findcard2 9163 findcard2OLD 9283 ac6sfi 9286 indexfi 9359 nn1suc 12233 uzind4s2 12892 wrdind 14671 wrd2ind 14672 prmind2 16621 mndind 18708 elmptrab 23330 isfildlem 23360 ifeqeqx 31769 wrdt2ind 32112 bnj609 33923 bnj601 33926 sdclem2 36605 fdc1 36609 sbccom2 36988 sbccom2f 36989 sbccom2fi 36990 elimhyps 37826 dedths 37827 elimhyps2 37829 dedths2 37830 lshpkrlem3 37977 rexrabdioph 41522 rexfrabdioph 41523 2rexfrabdioph 41524 3rexfrabdioph 41525 4rexfrabdioph 41526 6rexfrabdioph 41527 7rexfrabdioph 41528 2nn0ind 41674 zindbi 41675 axfrege52c 42628 frege58c 42662 frege92 42696 2sbc6g 43164 2sbc5g 43165 pm14.122b 43172 pm14.24 43181 iotavalsb 43182 sbiota1 43183 fvsb 43201 or2expropbilem1 45732 ich2exprop 46129 reupr 46180 |
Copyright terms: Public domain | W3C validator |