| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version | ||
| Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3754 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3756 instead of df-sbc 3754. (dfsbcq2 3756 is needed because unlike Quine we do not overload the df-sb 2066 syntax.) As a consequence of these theorems, we can derive sbc8g 3761, which is a weaker version of df-sbc 3754 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3761, so we will allow direct use of df-sbc 3754 after Theorem sbc2or 3762 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-sbc 3754 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 3 | df-sbc 3754 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-sbc 3754 |
| This theorem is referenced by: sbceq1d 3758 sbc8g 3761 spsbc 3766 sbccow 3776 sbcco 3779 sbcco2 3780 sbcie2g 3794 elrabsf 3799 eqsbc1 3800 csbeq1 3865 cbvralcsf 3904 sbcnestgfw 4384 sbcco3gw 4388 sbcnestgf 4389 sbcco3g 4393 csbie2df 4406 reusngf 4638 reuprg0 4666 sbcop 5449 reuop 6266 ralrnmptw 7066 ralrnmpt 7068 tfindes 7839 findcard2 9128 ac6sfi 9231 indexfi 9311 nn1suc 12208 uzind4s2 12868 wrdind 14687 wrd2ind 14688 prmind2 16655 mndind 18755 elmptrab 23714 isfildlem 23744 ifeqeqx 32471 wrdt2ind 32875 bnj609 34907 bnj601 34910 weiunlem2 36451 sdclem2 37736 fdc1 37740 sbccom2 38119 sbccom2f 38120 sbccom2fi 38121 elimhyps 38954 dedths 38955 elimhyps2 38957 dedths2 38958 lshpkrlem3 39105 rexrabdioph 42782 rexfrabdioph 42783 2rexfrabdioph 42784 3rexfrabdioph 42785 4rexfrabdioph 42786 6rexfrabdioph 42787 7rexfrabdioph 42788 2nn0ind 42934 zindbi 42935 axfrege52c 43876 frege58c 43910 frege92 43944 2sbc6g 44404 2sbc5g 44405 pm14.122b 44412 pm14.24 44421 iotavalsb 44422 sbiota1 44423 fvsb 44441 or2expropbilem1 47033 ich2exprop 47472 reupr 47523 |
| Copyright terms: Public domain | W3C validator |