![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version |
Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3707 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3709 instead of df-sbc 3707. (dfsbcq2 3709 is needed because unlike Quine we do not overload the df-sb 2043 syntax.) As a consequence of these theorems, we can derive sbc8g 3714, which is a weaker version of df-sbc 3707 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3714, so we will allow direct use of df-sbc 3707 after theorem sbc2or 3715 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2870 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-sbc 3707 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
3 | df-sbc 3707 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
4 | 1, 2, 3 | 3bitr4g 315 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1522 ∈ wcel 2081 {cab 2775 [wsbc 3706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-cleq 2788 df-clel 2863 df-sbc 3707 |
This theorem is referenced by: sbceq1d 3711 sbc8g 3714 spsbc 3719 sbcco 3729 sbcco2 3730 sbcie2g 3740 elrabsf 3745 eqsbc3 3746 eqsbc3OLD 3747 csbeq1 3814 cbvralcsf 3849 sbcnestgf 4290 sbcco3g 4294 reusngf 4519 reuprg0 4545 sbcop 5272 reuop 6019 ralrnmpt 6725 tfindes 7433 findcard2 8604 ac6sfi 8608 indexfi 8678 nn1suc 11507 uzind4s2 12158 wrdind 13920 wrd2ind 13921 prmind2 15858 mndind 17805 elmptrab 22119 isfildlem 22149 ifeqeqx 29986 wrdt2ind 30306 bnj609 31805 bnj601 31808 sdclem2 34549 fdc1 34553 sbccom2 34935 sbccom2f 34936 sbccom2fi 34937 elimhyps 35628 dedths 35629 elimhyps2 35631 dedths2 35632 lshpkrlem3 35779 rexrabdioph 38876 rexfrabdioph 38877 2rexfrabdioph 38878 3rexfrabdioph 38879 4rexfrabdioph 38880 6rexfrabdioph 38881 7rexfrabdioph 38882 2nn0ind 39027 zindbi 39028 axfrege52c 39718 frege58c 39752 frege92 39786 2sbc6g 40285 2sbc5g 40286 pm14.122b 40293 pm14.24 40302 iotavalsb 40303 sbiota1 40304 fvsb 40323 or2expropbilem1 42783 ich2exprop 43115 reupr 43166 |
Copyright terms: Public domain | W3C validator |