| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsbcq | Structured version Visualization version GIF version | ||
| Description: Proper substitution of a
class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3757 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3759 instead of df-sbc 3757. (dfsbcq2 3759 is needed because unlike Quine we do not overload the df-sb 2066 syntax.) As a consequence of these theorems, we can derive sbc8g 3764, which is a weaker version of df-sbc 3757 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3764, so we will allow direct use of df-sbc 3757 after Theorem sbc2or 3765 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| dfsbcq | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-sbc 3757 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 3 | df-sbc 3757 | . 2 ⊢ ([𝐵 / 𝑥]𝜑 ↔ 𝐵 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-sbc 3757 |
| This theorem is referenced by: sbceq1d 3761 sbc8g 3764 spsbc 3769 sbccow 3779 sbcco 3782 sbcco2 3783 sbcie2g 3797 elrabsf 3802 eqsbc1 3803 csbeq1 3868 cbvralcsf 3907 sbcnestgfw 4387 sbcco3gw 4391 sbcnestgf 4392 sbcco3g 4396 csbie2df 4409 reusngf 4641 reuprg0 4669 sbcop 5452 reuop 6269 ralrnmptw 7069 ralrnmpt 7071 tfindes 7842 findcard2 9134 ac6sfi 9238 indexfi 9318 nn1suc 12215 uzind4s2 12875 wrdind 14694 wrd2ind 14695 prmind2 16662 mndind 18762 elmptrab 23721 isfildlem 23751 ifeqeqx 32478 wrdt2ind 32882 bnj609 34914 bnj601 34917 weiunlem2 36458 sdclem2 37743 fdc1 37747 sbccom2 38126 sbccom2f 38127 sbccom2fi 38128 elimhyps 38961 dedths 38962 elimhyps2 38964 dedths2 38965 lshpkrlem3 39112 rexrabdioph 42789 rexfrabdioph 42790 2rexfrabdioph 42791 3rexfrabdioph 42792 4rexfrabdioph 42793 6rexfrabdioph 42794 7rexfrabdioph 42795 2nn0ind 42941 zindbi 42942 axfrege52c 43883 frege58c 43917 frege92 43951 2sbc6g 44411 2sbc5g 44412 pm14.122b 44419 pm14.24 44428 iotavalsb 44429 sbiota1 44430 fvsb 44448 or2expropbilem1 47037 ich2exprop 47476 reupr 47527 |
| Copyright terms: Public domain | W3C validator |