| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dedths | Structured version Visualization version GIF version | ||
| Description: A version of weak deduction theorem dedth 4557 using explicit substitution. (Contributed by NM, 15-Jun-2019.) |
| Ref | Expression |
|---|---|
| dedths.1 | ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜓 |
| Ref | Expression |
|---|---|
| dedths | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3765 | . . 3 ⊢ (𝑥 = if([𝑥 / 𝑥]𝜑, 𝑥, 𝐵) → ([𝑥 / 𝑥]𝜓 ↔ [if([𝑥 / 𝑥]𝜑, 𝑥, 𝐵) / 𝑥]𝜓)) | |
| 2 | dedths.1 | . . . 4 ⊢ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜓 | |
| 3 | sbcid 3780 | . . . . 5 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 4 | ifbi 4521 | . . . . 5 ⊢ (([𝑥 / 𝑥]𝜑 ↔ 𝜑) → if([𝑥 / 𝑥]𝜑, 𝑥, 𝐵) = if(𝜑, 𝑥, 𝐵)) | |
| 5 | dfsbcq 3765 | . . . . 5 ⊢ (if([𝑥 / 𝑥]𝜑, 𝑥, 𝐵) = if(𝜑, 𝑥, 𝐵) → ([if([𝑥 / 𝑥]𝜑, 𝑥, 𝐵) / 𝑥]𝜓 ↔ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜓)) | |
| 6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ([if([𝑥 / 𝑥]𝜑, 𝑥, 𝐵) / 𝑥]𝜓 ↔ [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜓) |
| 7 | 2, 6 | mpbir 231 | . . 3 ⊢ [if([𝑥 / 𝑥]𝜑, 𝑥, 𝐵) / 𝑥]𝜓 |
| 8 | 1, 7 | dedth 4557 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 → [𝑥 / 𝑥]𝜓) |
| 9 | sbcid 3780 | . 2 ⊢ ([𝑥 / 𝑥]𝜓 ↔ 𝜓) | |
| 10 | 8, 3, 9 | 3imtr3i 291 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 [wsbc 3763 ifcif 4498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-sbc 3764 df-if 4499 |
| This theorem is referenced by: renegclALT 38902 |
| Copyright terms: Public domain | W3C validator |