| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elimhyps2 | Structured version Visualization version GIF version | ||
| Description: Generalization of elimhyps 38963 that is not useful unless we can separately prove ⊢ 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| elimhyps2.1 | ⊢ [𝐵 / 𝑥]𝜑 |
| Ref | Expression |
|---|---|
| elimhyps2 | ⊢ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3789 | . 2 ⊢ (𝐴 = if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) → ([𝐴 / 𝑥]𝜑 ↔ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑)) | |
| 2 | dfsbcq 3789 | . 2 ⊢ (𝐵 = if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) → ([𝐵 / 𝑥]𝜑 ↔ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑)) | |
| 3 | elimhyps2.1 | . 2 ⊢ [𝐵 / 𝑥]𝜑 | |
| 4 | 1, 2, 3 | elimhyp 4590 | 1 ⊢ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: [wsbc 3787 ifcif 4524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-sbc 3788 df-if 4525 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |