Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elimhyps2 Structured version   Visualization version   GIF version

Theorem elimhyps2 38982
Description: Generalization of elimhyps 38979 that is not useful unless we can separately prove 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.)
Hypothesis
Ref Expression
elimhyps2.1 [𝐵 / 𝑥]𝜑
Assertion
Ref Expression
elimhyps2 [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑

Proof of Theorem elimhyps2
StepHypRef Expression
1 dfsbcq 3741 . 2 (𝐴 = if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) → ([𝐴 / 𝑥]𝜑[if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑))
2 dfsbcq 3741 . 2 (𝐵 = if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) → ([𝐵 / 𝑥]𝜑[if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑))
3 elimhyps2.1 . 2 [𝐵 / 𝑥]𝜑
41, 2, 3elimhyp 4539 1 [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  [wsbc 3739  ifcif 4473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-sbc 3740  df-if 4474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator