![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elimhyps2 | Structured version Visualization version GIF version |
Description: Generalization of elimhyps 38917 that is not useful unless we can separately prove ⊢ 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.) |
Ref | Expression |
---|---|
elimhyps2.1 | ⊢ [𝐵 / 𝑥]𝜑 |
Ref | Expression |
---|---|
elimhyps2 | ⊢ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3806 | . 2 ⊢ (𝐴 = if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) → ([𝐴 / 𝑥]𝜑 ↔ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑)) | |
2 | dfsbcq 3806 | . 2 ⊢ (𝐵 = if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) → ([𝐵 / 𝑥]𝜑 ↔ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑)) | |
3 | elimhyps2.1 | . 2 ⊢ [𝐵 / 𝑥]𝜑 | |
4 | 1, 2, 3 | elimhyp 4613 | 1 ⊢ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: [wsbc 3804 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 df-if 4549 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |