| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-3o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| Ref | Expression |
|---|---|
| df-3o | ⊢ 3o = suc 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c3o 8480 | . 2 class 3o | |
| 2 | c2o 8479 | . . 3 class 2o | |
| 3 | 2 | csuc 6359 | . 2 class suc 2o |
| 4 | 1, 3 | wceq 1540 | 1 wff 3o = suc 2o |
| Colors of variables: wff setvar class |
| This definition is referenced by: ord3 8502 3on 8503 o2p2e4 8558 3onn 8661 en3 9293 hash3 14429 finxp3o 37423 df3o2 43304 df3o3 43305 omcl3g 43325 nlim3 43435 tr3dom 43519 har2o 43537 clsk1independent 44037 |
| Copyright terms: Public domain | W3C validator |