| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-3o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| Ref | Expression |
|---|---|
| df-3o | ⊢ 3o = suc 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c3o 8429 | . 2 class 3o | |
| 2 | c2o 8428 | . . 3 class 2o | |
| 3 | 2 | csuc 6334 | . 2 class suc 2o |
| 4 | 1, 3 | wceq 1540 | 1 wff 3o = suc 2o |
| Colors of variables: wff setvar class |
| This definition is referenced by: ord3 8449 3on 8450 o2p2e4 8505 3onn 8608 en3 9227 hash3 14371 finxp3o 37388 df3o2 43302 df3o3 43303 omcl3g 43323 nlim3 43433 tr3dom 43517 har2o 43535 clsk1independent 44035 |
| Copyright terms: Public domain | W3C validator |