MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-3o Structured version   Visualization version   GIF version

Definition df-3o 8269
Description: Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.)
Assertion
Ref Expression
df-3o 3o = suc 2o

Detailed syntax breakdown of Definition df-3o
StepHypRef Expression
1 c3o 8262 . 2 class 3o
2 c2o 8261 . . 3 class 2o
32csuc 6253 . 2 class suc 2o
41, 3wceq 1539 1 wff 3o = suc 2o
Colors of variables: wff setvar class
This definition is referenced by:  3on  8277  o2p2e4  8333  o2p2e4OLD  8334  3onn  8434  en3  8984  hash3  14049  finxp3o  35498  tr3dom  41033  df3o2  41523  df3o3  41524  clsk1independent  41545
  Copyright terms: Public domain W3C validator