Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-3o | Structured version Visualization version GIF version |
Description: Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.) |
Ref | Expression |
---|---|
df-3o | ⊢ 3o = suc 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c3o 8292 | . 2 class 3o | |
2 | c2o 8291 | . . 3 class 2o | |
3 | 2 | csuc 6268 | . 2 class suc 2o |
4 | 1, 3 | wceq 1539 | 1 wff 3o = suc 2o |
Colors of variables: wff setvar class |
This definition is referenced by: 3on 8314 o2p2e4 8371 o2p2e4OLD 8372 3onn 8474 en3 9054 hash3 14121 finxp3o 35571 nlim3 41051 tr3dom 41135 har2o 41153 df3o2 41634 df3o3 41635 clsk1independent 41656 |
Copyright terms: Public domain | W3C validator |