| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-3o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| Ref | Expression |
|---|---|
| df-3o | ⊢ 3o = suc 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c3o 8389 | . 2 class 3o | |
| 2 | c2o 8388 | . . 3 class 2o | |
| 3 | 2 | csuc 6316 | . 2 class suc 2o |
| 4 | 1, 3 | wceq 1541 | 1 wff 3o = suc 2o |
| Colors of variables: wff setvar class |
| This definition is referenced by: ord3 8409 3on 8410 o2p2e4 8465 3onn 8568 en3 9176 hash3 14320 finxp3o 37517 df3o2 43470 df3o3 43471 omcl3g 43491 nlim3 43601 tr3dom 43685 har2o 43703 clsk1independent 44203 |
| Copyright terms: Public domain | W3C validator |