|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-3o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.) | 
| Ref | Expression | 
|---|---|
| df-3o | ⊢ 3o = suc 2o | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | c3o 8502 | . 2 class 3o | |
| 2 | c2o 8501 | . . 3 class 2o | |
| 3 | 2 | csuc 6385 | . 2 class suc 2o | 
| 4 | 1, 3 | wceq 1539 | 1 wff 3o = suc 2o | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: ord3 8524 3on 8525 o2p2e4 8580 3onn 8683 en3 9317 hash3 14446 finxp3o 37402 df3o2 43331 df3o3 43332 omcl3g 43352 nlim3 43462 tr3dom 43546 har2o 43564 clsk1independent 44064 | 
| Copyright terms: Public domain | W3C validator |