![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-3o | Structured version Visualization version GIF version |
Description: Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.) |
Ref | Expression |
---|---|
df-3o | ⊢ 3o = suc 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c3o 8408 | . 2 class 3o | |
2 | c2o 8407 | . . 3 class 2o | |
3 | 2 | csuc 6320 | . 2 class suc 2o |
4 | 1, 3 | wceq 1542 | 1 wff 3o = suc 2o |
Colors of variables: wff setvar class |
This definition is referenced by: ord3 8430 3on 8431 o2p2e4 8488 o2p2e4OLD 8489 3onn 8591 en3 9227 hash3 14307 finxp3o 35874 df3o2 41650 df3o3 41651 omcl3g 41670 nlim3 41723 tr3dom 41807 har2o 41825 clsk1independent 42325 |
Copyright terms: Public domain | W3C validator |