Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omcl3g Structured version   Visualization version   GIF version

Theorem omcl3g 43311
Description: Closure law for ordinal multiplication. (Contributed by RP, 14-Jan-2025.)
Assertion
Ref Expression
omcl3g (((𝐴𝐶𝐵𝐶) ∧ (𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶)

Proof of Theorem omcl3g
StepHypRef Expression
1 eltpi 4640 . . . . 5 (𝐶 ∈ {∅, 1o, 2o} → (𝐶 = ∅ ∨ 𝐶 = 1o𝐶 = 2o))
2 df-3o 8390 . . . . . 6 3o = suc 2o
3 df2o3 8396 . . . . . . . 8 2o = {∅, 1o}
43uneq1i 4115 . . . . . . 7 (2o ∪ {2o}) = ({∅, 1o} ∪ {2o})
5 df-suc 6313 . . . . . . 7 suc 2o = (2o ∪ {2o})
6 df-tp 4582 . . . . . . 7 {∅, 1o, 2o} = ({∅, 1o} ∪ {2o})
74, 5, 63eqtr4i 2762 . . . . . 6 suc 2o = {∅, 1o, 2o}
82, 7eqtri 2752 . . . . 5 3o = {∅, 1o, 2o}
91, 8eleq2s 2846 . . . 4 (𝐶 ∈ 3o → (𝐶 = ∅ ∨ 𝐶 = 1o𝐶 = 2o))
10 orc 867 . . . . . . 7 (𝐶 = ∅ → (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐶)) ∧ 𝐶 ∈ On)))
11 omcl2 43310 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐶)) ∧ 𝐶 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶)
1210, 11sylan2 593 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ 𝐶 = ∅) → (𝐴 ·o 𝐵) ∈ 𝐶)
1312ex 412 . . . . 5 ((𝐴𝐶𝐵𝐶) → (𝐶 = ∅ → (𝐴 ·o 𝐵) ∈ 𝐶))
14 el1o 8413 . . . . . . . . 9 (𝐴 ∈ 1o𝐴 = ∅)
15 el1o 8413 . . . . . . . . 9 (𝐵 ∈ 1o𝐵 = ∅)
16 oveq12 7358 . . . . . . . . . 10 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = (∅ ·o ∅))
17 0elon 6362 . . . . . . . . . . . 12 ∅ ∈ On
18 om0 8435 . . . . . . . . . . . 12 (∅ ∈ On → (∅ ·o ∅) = ∅)
1917, 18ax-mp 5 . . . . . . . . . . 11 (∅ ·o ∅) = ∅
20 0lt1o 8422 . . . . . . . . . . 11 ∅ ∈ 1o
2119, 20eqeltri 2824 . . . . . . . . . 10 (∅ ·o ∅) ∈ 1o
2216, 21eqeltrdi 2836 . . . . . . . . 9 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) ∈ 1o)
2314, 15, 22syl2anb 598 . . . . . . . 8 ((𝐴 ∈ 1o𝐵 ∈ 1o) → (𝐴 ·o 𝐵) ∈ 1o)
2423a1i 11 . . . . . . 7 (𝐶 = 1o → ((𝐴 ∈ 1o𝐵 ∈ 1o) → (𝐴 ·o 𝐵) ∈ 1o))
25 eleq2 2817 . . . . . . . 8 (𝐶 = 1o → (𝐴𝐶𝐴 ∈ 1o))
26 eleq2 2817 . . . . . . . 8 (𝐶 = 1o → (𝐵𝐶𝐵 ∈ 1o))
2725, 26anbi12d 632 . . . . . . 7 (𝐶 = 1o → ((𝐴𝐶𝐵𝐶) ↔ (𝐴 ∈ 1o𝐵 ∈ 1o)))
28 eleq2 2817 . . . . . . 7 (𝐶 = 1o → ((𝐴 ·o 𝐵) ∈ 𝐶 ↔ (𝐴 ·o 𝐵) ∈ 1o))
2924, 27, 283imtr4d 294 . . . . . 6 (𝐶 = 1o → ((𝐴𝐶𝐵𝐶) → (𝐴 ·o 𝐵) ∈ 𝐶))
3029com12 32 . . . . 5 ((𝐴𝐶𝐵𝐶) → (𝐶 = 1o → (𝐴 ·o 𝐵) ∈ 𝐶))
31 elpri 4601 . . . . . . . . . 10 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
3231, 3eleq2s 2846 . . . . . . . . 9 (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o))
33 elpri 4601 . . . . . . . . . 10 (𝐵 ∈ {∅, 1o} → (𝐵 = ∅ ∨ 𝐵 = 1o))
3433, 3eleq2s 2846 . . . . . . . . 9 (𝐵 ∈ 2o → (𝐵 = ∅ ∨ 𝐵 = 1o))
35 0ex 5246 . . . . . . . . . . . . 13 ∅ ∈ V
3635prid1 4714 . . . . . . . . . . . 12 ∅ ∈ {∅, 1o}
3736, 19, 33eltr4i 2841 . . . . . . . . . . 11 (∅ ·o ∅) ∈ 2o
3816, 37eqeltrdi 2836 . . . . . . . . . 10 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) ∈ 2o)
39 oveq12 7358 . . . . . . . . . . 11 ((𝐴 = 1o𝐵 = ∅) → (𝐴 ·o 𝐵) = (1o ·o ∅))
40 1on 8400 . . . . . . . . . . . . 13 1o ∈ On
41 om0 8435 . . . . . . . . . . . . 13 (1o ∈ On → (1o ·o ∅) = ∅)
4240, 41ax-mp 5 . . . . . . . . . . . 12 (1o ·o ∅) = ∅
4336, 42, 33eltr4i 2841 . . . . . . . . . . 11 (1o ·o ∅) ∈ 2o
4439, 43eqeltrdi 2836 . . . . . . . . . 10 ((𝐴 = 1o𝐵 = ∅) → (𝐴 ·o 𝐵) ∈ 2o)
45 oveq12 7358 . . . . . . . . . . 11 ((𝐴 = ∅ ∧ 𝐵 = 1o) → (𝐴 ·o 𝐵) = (∅ ·o 1o))
46 om0r 8457 . . . . . . . . . . . . 13 (1o ∈ On → (∅ ·o 1o) = ∅)
4740, 46ax-mp 5 . . . . . . . . . . . 12 (∅ ·o 1o) = ∅
4836, 47, 33eltr4i 2841 . . . . . . . . . . 11 (∅ ·o 1o) ∈ 2o
4945, 48eqeltrdi 2836 . . . . . . . . . 10 ((𝐴 = ∅ ∧ 𝐵 = 1o) → (𝐴 ·o 𝐵) ∈ 2o)
50 oveq12 7358 . . . . . . . . . . 11 ((𝐴 = 1o𝐵 = 1o) → (𝐴 ·o 𝐵) = (1o ·o 1o))
51 1oex 8398 . . . . . . . . . . . . 13 1o ∈ V
5251prid2 4715 . . . . . . . . . . . 12 1o ∈ {∅, 1o}
53 om1 8460 . . . . . . . . . . . . 13 (1o ∈ On → (1o ·o 1o) = 1o)
5440, 53ax-mp 5 . . . . . . . . . . . 12 (1o ·o 1o) = 1o
5552, 54, 33eltr4i 2841 . . . . . . . . . . 11 (1o ·o 1o) ∈ 2o
5650, 55eqeltrdi 2836 . . . . . . . . . 10 ((𝐴 = 1o𝐵 = 1o) → (𝐴 ·o 𝐵) ∈ 2o)
5738, 44, 49, 56ccase 1037 . . . . . . . . 9 (((𝐴 = ∅ ∨ 𝐴 = 1o) ∧ (𝐵 = ∅ ∨ 𝐵 = 1o)) → (𝐴 ·o 𝐵) ∈ 2o)
5832, 34, 57syl2an 596 . . . . . . . 8 ((𝐴 ∈ 2o𝐵 ∈ 2o) → (𝐴 ·o 𝐵) ∈ 2o)
5958a1i 11 . . . . . . 7 (𝐶 = 2o → ((𝐴 ∈ 2o𝐵 ∈ 2o) → (𝐴 ·o 𝐵) ∈ 2o))
60 eleq2 2817 . . . . . . . 8 (𝐶 = 2o → (𝐴𝐶𝐴 ∈ 2o))
61 eleq2 2817 . . . . . . . 8 (𝐶 = 2o → (𝐵𝐶𝐵 ∈ 2o))
6260, 61anbi12d 632 . . . . . . 7 (𝐶 = 2o → ((𝐴𝐶𝐵𝐶) ↔ (𝐴 ∈ 2o𝐵 ∈ 2o)))
63 eleq2 2817 . . . . . . 7 (𝐶 = 2o → ((𝐴 ·o 𝐵) ∈ 𝐶 ↔ (𝐴 ·o 𝐵) ∈ 2o))
6459, 62, 633imtr4d 294 . . . . . 6 (𝐶 = 2o → ((𝐴𝐶𝐵𝐶) → (𝐴 ·o 𝐵) ∈ 𝐶))
6564com12 32 . . . . 5 ((𝐴𝐶𝐵𝐶) → (𝐶 = 2o → (𝐴 ·o 𝐵) ∈ 𝐶))
6613, 30, 653jaod 1431 . . . 4 ((𝐴𝐶𝐵𝐶) → ((𝐶 = ∅ ∨ 𝐶 = 1o𝐶 = 2o) → (𝐴 ·o 𝐵) ∈ 𝐶))
679, 66syl5 34 . . 3 ((𝐴𝐶𝐵𝐶) → (𝐶 ∈ 3o → (𝐴 ·o 𝐵) ∈ 𝐶))
68 olc 868 . . . . 5 ((𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On)))
69 omcl2 43310 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶)
7068, 69sylan2 593 . . . 4 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On)) → (𝐴 ·o 𝐵) ∈ 𝐶)
7170ex 412 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (𝐴 ·o 𝐵) ∈ 𝐶))
7267, 71jaod 859 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On)) → (𝐴 ·o 𝐵) ∈ 𝐶))
7372imp 406 1 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  cun 3901  c0 4284  {csn 4577  {cpr 4579  {ctp 4581  Oncon0 6307  suc csuc 6309  (class class class)co 7349  ωcom 7799  1oc1o 8381  2oc2o 8382  3oc3o 8383   ·o comu 8386  o coe 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-3o 8390  df-oadd 8392  df-omul 8393  df-oexp 8394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator