Proof of Theorem omcl3g
| Step | Hyp | Ref
| Expression |
| 1 | | eltpi 4687 |
. . . . 5
⊢ (𝐶 ∈ {∅, 1o,
2o} → (𝐶 =
∅ ∨ 𝐶 =
1o ∨ 𝐶 =
2o)) |
| 2 | | df-3o 8509 |
. . . . . 6
⊢
3o = suc 2o |
| 3 | | df2o3 8515 |
. . . . . . . 8
⊢
2o = {∅, 1o} |
| 4 | 3 | uneq1i 4163 |
. . . . . . 7
⊢
(2o ∪ {2o}) = ({∅, 1o} ∪
{2o}) |
| 5 | | df-suc 6389 |
. . . . . . 7
⊢ suc
2o = (2o ∪ {2o}) |
| 6 | | df-tp 4630 |
. . . . . . 7
⊢ {∅,
1o, 2o} = ({∅, 1o} ∪
{2o}) |
| 7 | 4, 5, 6 | 3eqtr4i 2774 |
. . . . . 6
⊢ suc
2o = {∅, 1o, 2o} |
| 8 | 2, 7 | eqtri 2764 |
. . . . 5
⊢
3o = {∅, 1o, 2o} |
| 9 | 1, 8 | eleq2s 2858 |
. . . 4
⊢ (𝐶 ∈ 3o →
(𝐶 = ∅ ∨ 𝐶 = 1o ∨ 𝐶 =
2o)) |
| 10 | | orc 867 |
. . . . . . 7
⊢ (𝐶 = ∅ → (𝐶 = ∅ ∨ (𝐶 = (ω ↑o
(ω ↑o 𝐶)) ∧ 𝐶 ∈ On))) |
| 11 | | omcl2 43351 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω
↑o 𝐶))
∧ 𝐶 ∈ On))) →
(𝐴 ·o
𝐵) ∈ 𝐶) |
| 12 | 10, 11 | sylan2 593 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐶 = ∅) → (𝐴 ·o 𝐵) ∈ 𝐶) |
| 13 | 12 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐶 = ∅ → (𝐴 ·o 𝐵) ∈ 𝐶)) |
| 14 | | el1o 8534 |
. . . . . . . . 9
⊢ (𝐴 ∈ 1o ↔
𝐴 =
∅) |
| 15 | | el1o 8534 |
. . . . . . . . 9
⊢ (𝐵 ∈ 1o ↔
𝐵 =
∅) |
| 16 | | oveq12 7441 |
. . . . . . . . . 10
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = (∅
·o ∅)) |
| 17 | | 0elon 6437 |
. . . . . . . . . . . 12
⊢ ∅
∈ On |
| 18 | | om0 8556 |
. . . . . . . . . . . 12
⊢ (∅
∈ On → (∅ ·o ∅) =
∅) |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (∅
·o ∅) = ∅ |
| 20 | | 0lt1o 8543 |
. . . . . . . . . . 11
⊢ ∅
∈ 1o |
| 21 | 19, 20 | eqeltri 2836 |
. . . . . . . . . 10
⊢ (∅
·o ∅) ∈ 1o |
| 22 | 16, 21 | eqeltrdi 2848 |
. . . . . . . . 9
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) ∈
1o) |
| 23 | 14, 15, 22 | syl2anb 598 |
. . . . . . . 8
⊢ ((𝐴 ∈ 1o ∧
𝐵 ∈ 1o)
→ (𝐴
·o 𝐵)
∈ 1o) |
| 24 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝐶 = 1o → ((𝐴 ∈ 1o ∧
𝐵 ∈ 1o)
→ (𝐴
·o 𝐵)
∈ 1o)) |
| 25 | | eleq2 2829 |
. . . . . . . 8
⊢ (𝐶 = 1o → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 1o)) |
| 26 | | eleq2 2829 |
. . . . . . . 8
⊢ (𝐶 = 1o → (𝐵 ∈ 𝐶 ↔ 𝐵 ∈ 1o)) |
| 27 | 25, 26 | anbi12d 632 |
. . . . . . 7
⊢ (𝐶 = 1o → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ (𝐴 ∈ 1o ∧ 𝐵 ∈
1o))) |
| 28 | | eleq2 2829 |
. . . . . . 7
⊢ (𝐶 = 1o → ((𝐴 ·o 𝐵) ∈ 𝐶 ↔ (𝐴 ·o 𝐵) ∈ 1o)) |
| 29 | 24, 27, 28 | 3imtr4d 294 |
. . . . . 6
⊢ (𝐶 = 1o → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ·o 𝐵) ∈ 𝐶)) |
| 30 | 29 | com12 32 |
. . . . 5
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐶 = 1o → (𝐴 ·o 𝐵) ∈ 𝐶)) |
| 31 | | elpri 4648 |
. . . . . . . . . 10
⊢ (𝐴 ∈ {∅, 1o}
→ (𝐴 = ∅ ∨
𝐴 =
1o)) |
| 32 | 31, 3 | eleq2s 2858 |
. . . . . . . . 9
⊢ (𝐴 ∈ 2o →
(𝐴 = ∅ ∨ 𝐴 =
1o)) |
| 33 | | elpri 4648 |
. . . . . . . . . 10
⊢ (𝐵 ∈ {∅, 1o}
→ (𝐵 = ∅ ∨
𝐵 =
1o)) |
| 34 | 33, 3 | eleq2s 2858 |
. . . . . . . . 9
⊢ (𝐵 ∈ 2o →
(𝐵 = ∅ ∨ 𝐵 =
1o)) |
| 35 | | 0ex 5306 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
| 36 | 35 | prid1 4761 |
. . . . . . . . . . . 12
⊢ ∅
∈ {∅, 1o} |
| 37 | 36, 19, 3 | 3eltr4i 2853 |
. . . . . . . . . . 11
⊢ (∅
·o ∅) ∈ 2o |
| 38 | 16, 37 | eqeltrdi 2848 |
. . . . . . . . . 10
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) ∈
2o) |
| 39 | | oveq12 7441 |
. . . . . . . . . . 11
⊢ ((𝐴 = 1o ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = (1o
·o ∅)) |
| 40 | | 1on 8519 |
. . . . . . . . . . . . 13
⊢
1o ∈ On |
| 41 | | om0 8556 |
. . . . . . . . . . . . 13
⊢
(1o ∈ On → (1o ·o
∅) = ∅) |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(1o ·o ∅) = ∅ |
| 43 | 36, 42, 3 | 3eltr4i 2853 |
. . . . . . . . . . 11
⊢
(1o ·o ∅) ∈
2o |
| 44 | 39, 43 | eqeltrdi 2848 |
. . . . . . . . . 10
⊢ ((𝐴 = 1o ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) ∈
2o) |
| 45 | | oveq12 7441 |
. . . . . . . . . . 11
⊢ ((𝐴 = ∅ ∧ 𝐵 = 1o) → (𝐴 ·o 𝐵) = (∅
·o 1o)) |
| 46 | | om0r 8578 |
. . . . . . . . . . . . 13
⊢
(1o ∈ On → (∅ ·o
1o) = ∅) |
| 47 | 40, 46 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (∅
·o 1o) = ∅ |
| 48 | 36, 47, 3 | 3eltr4i 2853 |
. . . . . . . . . . 11
⊢ (∅
·o 1o) ∈ 2o |
| 49 | 45, 48 | eqeltrdi 2848 |
. . . . . . . . . 10
⊢ ((𝐴 = ∅ ∧ 𝐵 = 1o) → (𝐴 ·o 𝐵) ∈
2o) |
| 50 | | oveq12 7441 |
. . . . . . . . . . 11
⊢ ((𝐴 = 1o ∧ 𝐵 = 1o) → (𝐴 ·o 𝐵) = (1o
·o 1o)) |
| 51 | | 1oex 8517 |
. . . . . . . . . . . . 13
⊢
1o ∈ V |
| 52 | 51 | prid2 4762 |
. . . . . . . . . . . 12
⊢
1o ∈ {∅, 1o} |
| 53 | | om1 8581 |
. . . . . . . . . . . . 13
⊢
(1o ∈ On → (1o ·o
1o) = 1o) |
| 54 | 40, 53 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(1o ·o 1o) =
1o |
| 55 | 52, 54, 3 | 3eltr4i 2853 |
. . . . . . . . . . 11
⊢
(1o ·o 1o) ∈
2o |
| 56 | 50, 55 | eqeltrdi 2848 |
. . . . . . . . . 10
⊢ ((𝐴 = 1o ∧ 𝐵 = 1o) → (𝐴 ·o 𝐵) ∈
2o) |
| 57 | 38, 44, 49, 56 | ccase 1037 |
. . . . . . . . 9
⊢ (((𝐴 = ∅ ∨ 𝐴 = 1o) ∧ (𝐵 = ∅ ∨ 𝐵 = 1o)) → (𝐴 ·o 𝐵) ∈
2o) |
| 58 | 32, 34, 57 | syl2an 596 |
. . . . . . . 8
⊢ ((𝐴 ∈ 2o ∧
𝐵 ∈ 2o)
→ (𝐴
·o 𝐵)
∈ 2o) |
| 59 | 58 | a1i 11 |
. . . . . . 7
⊢ (𝐶 = 2o → ((𝐴 ∈ 2o ∧
𝐵 ∈ 2o)
→ (𝐴
·o 𝐵)
∈ 2o)) |
| 60 | | eleq2 2829 |
. . . . . . . 8
⊢ (𝐶 = 2o → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 2o)) |
| 61 | | eleq2 2829 |
. . . . . . . 8
⊢ (𝐶 = 2o → (𝐵 ∈ 𝐶 ↔ 𝐵 ∈ 2o)) |
| 62 | 60, 61 | anbi12d 632 |
. . . . . . 7
⊢ (𝐶 = 2o → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ (𝐴 ∈ 2o ∧ 𝐵 ∈
2o))) |
| 63 | | eleq2 2829 |
. . . . . . 7
⊢ (𝐶 = 2o → ((𝐴 ·o 𝐵) ∈ 𝐶 ↔ (𝐴 ·o 𝐵) ∈ 2o)) |
| 64 | 59, 62, 63 | 3imtr4d 294 |
. . . . . 6
⊢ (𝐶 = 2o → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ·o 𝐵) ∈ 𝐶)) |
| 65 | 64 | com12 32 |
. . . . 5
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐶 = 2o → (𝐴 ·o 𝐵) ∈ 𝐶)) |
| 66 | 13, 30, 65 | 3jaod 1430 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐶 = ∅ ∨ 𝐶 = 1o ∨ 𝐶 = 2o) → (𝐴 ·o 𝐵) ∈ 𝐶)) |
| 67 | 9, 66 | syl5 34 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐶 ∈ 3o → (𝐴 ·o 𝐵) ∈ 𝐶)) |
| 68 | | olc 868 |
. . . . 5
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈
On))) |
| 69 | | omcl2 43351 |
. . . . 5
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On))) →
(𝐴 ·o
𝐵) ∈ 𝐶) |
| 70 | 68, 69 | sylan2 593 |
. . . 4
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(𝐴 ·o
𝐵) ∈ 𝐶) |
| 71 | 70 | ex 412 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On) →
(𝐴 ·o
𝐵) ∈ 𝐶)) |
| 72 | 67, 71 | jaod 859 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On)) → (𝐴 ·o 𝐵) ∈ 𝐶)) |
| 73 | 72 | imp 406 |
1
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶) |