Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omcl3g Structured version   Visualization version   GIF version

Theorem omcl3g 43296
Description: Closure law for ordinal multiplication. (Contributed by RP, 14-Jan-2025.)
Assertion
Ref Expression
omcl3g (((𝐴𝐶𝐵𝐶) ∧ (𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶)

Proof of Theorem omcl3g
StepHypRef Expression
1 eltpi 4711 . . . . 5 (𝐶 ∈ {∅, 1o, 2o} → (𝐶 = ∅ ∨ 𝐶 = 1o𝐶 = 2o))
2 df-3o 8524 . . . . . 6 3o = suc 2o
3 df2o3 8530 . . . . . . . 8 2o = {∅, 1o}
43uneq1i 4187 . . . . . . 7 (2o ∪ {2o}) = ({∅, 1o} ∪ {2o})
5 df-suc 6401 . . . . . . 7 suc 2o = (2o ∪ {2o})
6 df-tp 4653 . . . . . . 7 {∅, 1o, 2o} = ({∅, 1o} ∪ {2o})
74, 5, 63eqtr4i 2778 . . . . . 6 suc 2o = {∅, 1o, 2o}
82, 7eqtri 2768 . . . . 5 3o = {∅, 1o, 2o}
91, 8eleq2s 2862 . . . 4 (𝐶 ∈ 3o → (𝐶 = ∅ ∨ 𝐶 = 1o𝐶 = 2o))
10 orc 866 . . . . . . 7 (𝐶 = ∅ → (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐶)) ∧ 𝐶 ∈ On)))
11 omcl2 43295 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐶)) ∧ 𝐶 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶)
1210, 11sylan2 592 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ 𝐶 = ∅) → (𝐴 ·o 𝐵) ∈ 𝐶)
1312ex 412 . . . . 5 ((𝐴𝐶𝐵𝐶) → (𝐶 = ∅ → (𝐴 ·o 𝐵) ∈ 𝐶))
14 el1o 8551 . . . . . . . . 9 (𝐴 ∈ 1o𝐴 = ∅)
15 el1o 8551 . . . . . . . . 9 (𝐵 ∈ 1o𝐵 = ∅)
16 oveq12 7457 . . . . . . . . . 10 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = (∅ ·o ∅))
17 0elon 6449 . . . . . . . . . . . 12 ∅ ∈ On
18 om0 8573 . . . . . . . . . . . 12 (∅ ∈ On → (∅ ·o ∅) = ∅)
1917, 18ax-mp 5 . . . . . . . . . . 11 (∅ ·o ∅) = ∅
20 0lt1o 8560 . . . . . . . . . . 11 ∅ ∈ 1o
2119, 20eqeltri 2840 . . . . . . . . . 10 (∅ ·o ∅) ∈ 1o
2216, 21eqeltrdi 2852 . . . . . . . . 9 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) ∈ 1o)
2314, 15, 22syl2anb 597 . . . . . . . 8 ((𝐴 ∈ 1o𝐵 ∈ 1o) → (𝐴 ·o 𝐵) ∈ 1o)
2423a1i 11 . . . . . . 7 (𝐶 = 1o → ((𝐴 ∈ 1o𝐵 ∈ 1o) → (𝐴 ·o 𝐵) ∈ 1o))
25 eleq2 2833 . . . . . . . 8 (𝐶 = 1o → (𝐴𝐶𝐴 ∈ 1o))
26 eleq2 2833 . . . . . . . 8 (𝐶 = 1o → (𝐵𝐶𝐵 ∈ 1o))
2725, 26anbi12d 631 . . . . . . 7 (𝐶 = 1o → ((𝐴𝐶𝐵𝐶) ↔ (𝐴 ∈ 1o𝐵 ∈ 1o)))
28 eleq2 2833 . . . . . . 7 (𝐶 = 1o → ((𝐴 ·o 𝐵) ∈ 𝐶 ↔ (𝐴 ·o 𝐵) ∈ 1o))
2924, 27, 283imtr4d 294 . . . . . 6 (𝐶 = 1o → ((𝐴𝐶𝐵𝐶) → (𝐴 ·o 𝐵) ∈ 𝐶))
3029com12 32 . . . . 5 ((𝐴𝐶𝐵𝐶) → (𝐶 = 1o → (𝐴 ·o 𝐵) ∈ 𝐶))
31 elpri 4671 . . . . . . . . . 10 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
3231, 3eleq2s 2862 . . . . . . . . 9 (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o))
33 elpri 4671 . . . . . . . . . 10 (𝐵 ∈ {∅, 1o} → (𝐵 = ∅ ∨ 𝐵 = 1o))
3433, 3eleq2s 2862 . . . . . . . . 9 (𝐵 ∈ 2o → (𝐵 = ∅ ∨ 𝐵 = 1o))
35 0ex 5325 . . . . . . . . . . . . 13 ∅ ∈ V
3635prid1 4787 . . . . . . . . . . . 12 ∅ ∈ {∅, 1o}
3736, 19, 33eltr4i 2857 . . . . . . . . . . 11 (∅ ·o ∅) ∈ 2o
3816, 37eqeltrdi 2852 . . . . . . . . . 10 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) ∈ 2o)
39 oveq12 7457 . . . . . . . . . . 11 ((𝐴 = 1o𝐵 = ∅) → (𝐴 ·o 𝐵) = (1o ·o ∅))
40 1on 8534 . . . . . . . . . . . . 13 1o ∈ On
41 om0 8573 . . . . . . . . . . . . 13 (1o ∈ On → (1o ·o ∅) = ∅)
4240, 41ax-mp 5 . . . . . . . . . . . 12 (1o ·o ∅) = ∅
4336, 42, 33eltr4i 2857 . . . . . . . . . . 11 (1o ·o ∅) ∈ 2o
4439, 43eqeltrdi 2852 . . . . . . . . . 10 ((𝐴 = 1o𝐵 = ∅) → (𝐴 ·o 𝐵) ∈ 2o)
45 oveq12 7457 . . . . . . . . . . 11 ((𝐴 = ∅ ∧ 𝐵 = 1o) → (𝐴 ·o 𝐵) = (∅ ·o 1o))
46 om0r 8595 . . . . . . . . . . . . 13 (1o ∈ On → (∅ ·o 1o) = ∅)
4740, 46ax-mp 5 . . . . . . . . . . . 12 (∅ ·o 1o) = ∅
4836, 47, 33eltr4i 2857 . . . . . . . . . . 11 (∅ ·o 1o) ∈ 2o
4945, 48eqeltrdi 2852 . . . . . . . . . 10 ((𝐴 = ∅ ∧ 𝐵 = 1o) → (𝐴 ·o 𝐵) ∈ 2o)
50 oveq12 7457 . . . . . . . . . . 11 ((𝐴 = 1o𝐵 = 1o) → (𝐴 ·o 𝐵) = (1o ·o 1o))
51 1oex 8532 . . . . . . . . . . . . 13 1o ∈ V
5251prid2 4788 . . . . . . . . . . . 12 1o ∈ {∅, 1o}
53 om1 8598 . . . . . . . . . . . . 13 (1o ∈ On → (1o ·o 1o) = 1o)
5440, 53ax-mp 5 . . . . . . . . . . . 12 (1o ·o 1o) = 1o
5552, 54, 33eltr4i 2857 . . . . . . . . . . 11 (1o ·o 1o) ∈ 2o
5650, 55eqeltrdi 2852 . . . . . . . . . 10 ((𝐴 = 1o𝐵 = 1o) → (𝐴 ·o 𝐵) ∈ 2o)
5738, 44, 49, 56ccase 1038 . . . . . . . . 9 (((𝐴 = ∅ ∨ 𝐴 = 1o) ∧ (𝐵 = ∅ ∨ 𝐵 = 1o)) → (𝐴 ·o 𝐵) ∈ 2o)
5832, 34, 57syl2an 595 . . . . . . . 8 ((𝐴 ∈ 2o𝐵 ∈ 2o) → (𝐴 ·o 𝐵) ∈ 2o)
5958a1i 11 . . . . . . 7 (𝐶 = 2o → ((𝐴 ∈ 2o𝐵 ∈ 2o) → (𝐴 ·o 𝐵) ∈ 2o))
60 eleq2 2833 . . . . . . . 8 (𝐶 = 2o → (𝐴𝐶𝐴 ∈ 2o))
61 eleq2 2833 . . . . . . . 8 (𝐶 = 2o → (𝐵𝐶𝐵 ∈ 2o))
6260, 61anbi12d 631 . . . . . . 7 (𝐶 = 2o → ((𝐴𝐶𝐵𝐶) ↔ (𝐴 ∈ 2o𝐵 ∈ 2o)))
63 eleq2 2833 . . . . . . 7 (𝐶 = 2o → ((𝐴 ·o 𝐵) ∈ 𝐶 ↔ (𝐴 ·o 𝐵) ∈ 2o))
6459, 62, 633imtr4d 294 . . . . . 6 (𝐶 = 2o → ((𝐴𝐶𝐵𝐶) → (𝐴 ·o 𝐵) ∈ 𝐶))
6564com12 32 . . . . 5 ((𝐴𝐶𝐵𝐶) → (𝐶 = 2o → (𝐴 ·o 𝐵) ∈ 𝐶))
6613, 30, 653jaod 1429 . . . 4 ((𝐴𝐶𝐵𝐶) → ((𝐶 = ∅ ∨ 𝐶 = 1o𝐶 = 2o) → (𝐴 ·o 𝐵) ∈ 𝐶))
679, 66syl5 34 . . 3 ((𝐴𝐶𝐵𝐶) → (𝐶 ∈ 3o → (𝐴 ·o 𝐵) ∈ 𝐶))
68 olc 867 . . . . 5 ((𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On)))
69 omcl2 43295 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶)
7068, 69sylan2 592 . . . 4 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On)) → (𝐴 ·o 𝐵) ∈ 𝐶)
7170ex 412 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (𝐴 ·o 𝐵) ∈ 𝐶))
7267, 71jaod 858 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On)) → (𝐴 ·o 𝐵) ∈ 𝐶))
7372imp 406 1 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3o 1086   = wceq 1537  wcel 2108  cun 3974  c0 4352  {csn 4648  {cpr 4650  {ctp 4652  Oncon0 6395  suc csuc 6397  (class class class)co 7448  ωcom 7903  1oc1o 8515  2oc2o 8516  3oc3o 8517   ·o comu 8520  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-3o 8524  df-oadd 8526  df-omul 8527  df-oexp 8528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator