MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3on Structured version   Visualization version   GIF version

Theorem 3on 8411
Description: Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
3on 3o ∈ On

Proof of Theorem 3on
StepHypRef Expression
1 df-3o 8397 . 2 3o = suc 2o
2 2on 8408 . . 3 2o ∈ On
32onsuci 7778 . 2 suc 2o ∈ On
41, 3eqeltri 2824 1 3o ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Oncon0 6311  suc csuc 6313  2oc2o 8389  3oc3o 8390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315  df-suc 6317  df-1o 8395  df-2o 8396  df-3o 8397
This theorem is referenced by:  4on  8412  oenord1  43292  3no  43414  nlim4  43421  clsk1independent  44022
  Copyright terms: Public domain W3C validator