Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3on | Structured version Visualization version GIF version |
Description: Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
3on | ⊢ 3o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 8299 | . 2 ⊢ 3o = suc 2o | |
2 | 2on 8311 | . . 3 ⊢ 2o ∈ On | |
3 | 2 | onsuci 7685 | . 2 ⊢ suc 2o ∈ On |
4 | 1, 3 | eqeltri 2835 | 1 ⊢ 3o ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Oncon0 6266 suc csuc 6268 2oc2o 8291 3oc3o 8292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 df-1o 8297 df-2o 8298 df-3o 8299 |
This theorem is referenced by: 4on 8315 nlim4 41052 clsk1independent 41656 |
Copyright terms: Public domain | W3C validator |