Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o3 Structured version   Visualization version   GIF version

Theorem df3o3 43276
Description: Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o3 3o = {∅, {∅}, {∅, {∅}}}

Proof of Theorem df3o3
StepHypRef Expression
1 df-3o 8524 . 2 3o = suc 2o
2 df2o2 8531 . . . 4 2o = {∅, {∅}}
32sneqi 4659 . . . 4 {2o} = {{∅, {∅}}}
42, 3uneq12i 4189 . . 3 (2o ∪ {2o}) = ({∅, {∅}} ∪ {{∅, {∅}}})
5 df-suc 6401 . . 3 suc 2o = (2o ∪ {2o})
6 df-tp 4653 . . 3 {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}})
74, 5, 63eqtr4i 2778 . 2 suc 2o = {∅, {∅}, {∅, {∅}}}
81, 7eqtri 2768 1 3o = {∅, {∅}, {∅, {∅}}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3974  c0 4352  {csn 4648  {cpr 4650  {ctp 4652  suc csuc 6397  2oc2o 8516  3oc3o 8517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-pr 4651  df-tp 4653  df-suc 6401  df-1o 8522  df-2o 8523  df-3o 8524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator