![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o3 | Structured version Visualization version GIF version |
Description: Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.) |
Ref | Expression |
---|---|
df3o3 | ⊢ 3o = {∅, {∅}, {∅, {∅}}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 8474 | . 2 ⊢ 3o = suc 2o | |
2 | df2o2 8481 | . . . 4 ⊢ 2o = {∅, {∅}} | |
3 | 2 | sneqi 4639 | . . . 4 ⊢ {2o} = {{∅, {∅}}} |
4 | 2, 3 | uneq12i 4161 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, {∅}} ∪ {{∅, {∅}}}) |
5 | df-suc 6370 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
6 | df-tp 4633 | . . 3 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
7 | 4, 5, 6 | 3eqtr4i 2769 | . 2 ⊢ suc 2o = {∅, {∅}, {∅, {∅}}} |
8 | 1, 7 | eqtri 2759 | 1 ⊢ 3o = {∅, {∅}, {∅, {∅}}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∪ cun 3946 ∅c0 4322 {csn 4628 {cpr 4630 {ctp 4632 suc csuc 6366 2oc2o 8466 3oc3o 8467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 df-un 3953 df-nul 4323 df-sn 4629 df-pr 4631 df-tp 4633 df-suc 6370 df-1o 8472 df-2o 8473 df-3o 8474 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |