![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o3 | Structured version Visualization version GIF version |
Description: Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.) |
Ref | Expression |
---|---|
df3o3 | ⊢ 3o = {∅, {∅}, {∅, {∅}}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 8470 | . 2 ⊢ 3o = suc 2o | |
2 | df2o2 8477 | . . . 4 ⊢ 2o = {∅, {∅}} | |
3 | 2 | sneqi 4638 | . . . 4 ⊢ {2o} = {{∅, {∅}}} |
4 | 2, 3 | uneq12i 4160 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, {∅}} ∪ {{∅, {∅}}}) |
5 | df-suc 6369 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
6 | df-tp 4632 | . . 3 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
7 | 4, 5, 6 | 3eqtr4i 2768 | . 2 ⊢ suc 2o = {∅, {∅}, {∅, {∅}}} |
8 | 1, 7 | eqtri 2758 | 1 ⊢ 3o = {∅, {∅}, {∅, {∅}}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3945 ∅c0 4321 {csn 4627 {cpr 4629 {ctp 4631 suc csuc 6365 2oc2o 8462 3oc3o 8463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-dif 3950 df-un 3952 df-nul 4322 df-sn 4628 df-pr 4630 df-tp 4632 df-suc 6369 df-1o 8468 df-2o 8469 df-3o 8470 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |