| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o3 | Structured version Visualization version GIF version | ||
| Description: Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.) |
| Ref | Expression |
|---|---|
| df3o3 | ⊢ 3o = {∅, {∅}, {∅, {∅}}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3o 8482 | . 2 ⊢ 3o = suc 2o | |
| 2 | df2o2 8489 | . . . 4 ⊢ 2o = {∅, {∅}} | |
| 3 | 2 | sneqi 4612 | . . . 4 ⊢ {2o} = {{∅, {∅}}} |
| 4 | 2, 3 | uneq12i 4141 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, {∅}} ∪ {{∅, {∅}}}) |
| 5 | df-suc 6358 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
| 6 | df-tp 4606 | . . 3 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
| 7 | 4, 5, 6 | 3eqtr4i 2768 | . 2 ⊢ suc 2o = {∅, {∅}, {∅, {∅}}} |
| 8 | 1, 7 | eqtri 2758 | 1 ⊢ 3o = {∅, {∅}, {∅, {∅}}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3924 ∅c0 4308 {csn 4601 {cpr 4603 {ctp 4605 suc csuc 6354 2oc2o 8474 3oc3o 8475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-pr 4604 df-tp 4606 df-suc 6358 df-1o 8480 df-2o 8481 df-3o 8482 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |