Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o3 | Structured version Visualization version GIF version |
Description: Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.) |
Ref | Expression |
---|---|
df3o3 | ⊢ 3o = {∅, {∅}, {∅, {∅}}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 8269 | . 2 ⊢ 3o = suc 2o | |
2 | df2o2 8283 | . . . 4 ⊢ 2o = {∅, {∅}} | |
3 | 2 | sneqi 4569 | . . . 4 ⊢ {2o} = {{∅, {∅}}} |
4 | 2, 3 | uneq12i 4091 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, {∅}} ∪ {{∅, {∅}}}) |
5 | df-suc 6257 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
6 | df-tp 4563 | . . 3 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
7 | 4, 5, 6 | 3eqtr4i 2776 | . 2 ⊢ suc 2o = {∅, {∅}, {∅, {∅}}} |
8 | 1, 7 | eqtri 2766 | 1 ⊢ 3o = {∅, {∅}, {∅, {∅}}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 ∅c0 4253 {csn 4558 {cpr 4560 {ctp 4562 suc csuc 6253 2oc2o 8261 3oc3o 8262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 df-tp 4563 df-suc 6257 df-1o 8267 df-2o 8268 df-3o 8269 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |