Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o3 Structured version   Visualization version   GIF version

Theorem df3o3 43338
Description: Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o3 3o = {∅, {∅}, {∅, {∅}}}

Proof of Theorem df3o3
StepHypRef Expression
1 df-3o 8482 . 2 3o = suc 2o
2 df2o2 8489 . . . 4 2o = {∅, {∅}}
32sneqi 4612 . . . 4 {2o} = {{∅, {∅}}}
42, 3uneq12i 4141 . . 3 (2o ∪ {2o}) = ({∅, {∅}} ∪ {{∅, {∅}}})
5 df-suc 6358 . . 3 suc 2o = (2o ∪ {2o})
6 df-tp 4606 . . 3 {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}})
74, 5, 63eqtr4i 2768 . 2 suc 2o = {∅, {∅}, {∅, {∅}}}
81, 7eqtri 2758 1 3o = {∅, {∅}, {∅, {∅}}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3924  c0 4308  {csn 4601  {cpr 4603  {ctp 4605  suc csuc 6354  2oc2o 8474  3oc3o 8475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-dif 3929  df-un 3931  df-nul 4309  df-sn 4602  df-pr 4604  df-tp 4606  df-suc 6358  df-1o 8480  df-2o 8481  df-3o 8482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator