Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o3 Structured version   Visualization version   GIF version

Theorem df3o3 43417
Description: Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o3 3o = {∅, {∅}, {∅, {∅}}}

Proof of Theorem df3o3
StepHypRef Expression
1 df-3o 8387 . 2 3o = suc 2o
2 df2o2 8394 . . . 4 2o = {∅, {∅}}
32sneqi 4584 . . . 4 {2o} = {{∅, {∅}}}
42, 3uneq12i 4113 . . 3 (2o ∪ {2o}) = ({∅, {∅}} ∪ {{∅, {∅}}})
5 df-suc 6312 . . 3 suc 2o = (2o ∪ {2o})
6 df-tp 4578 . . 3 {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}})
74, 5, 63eqtr4i 2764 . 2 suc 2o = {∅, {∅}, {∅, {∅}}}
81, 7eqtri 2754 1 3o = {∅, {∅}, {∅, {∅}}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3895  c0 4280  {csn 4573  {cpr 4575  {ctp 4577  suc csuc 6308  2oc2o 8379  3oc3o 8380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-nul 4281  df-sn 4574  df-pr 4576  df-tp 4578  df-suc 6312  df-1o 8385  df-2o 8386  df-3o 8387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator