Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o3 Structured version   Visualization version   GIF version

Theorem df3o3 42527
Description: Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o3 3o = {∅, {∅}, {∅, {∅}}}

Proof of Theorem df3o3
StepHypRef Expression
1 df-3o 8474 . 2 3o = suc 2o
2 df2o2 8481 . . . 4 2o = {∅, {∅}}
32sneqi 4639 . . . 4 {2o} = {{∅, {∅}}}
42, 3uneq12i 4161 . . 3 (2o ∪ {2o}) = ({∅, {∅}} ∪ {{∅, {∅}}})
5 df-suc 6370 . . 3 suc 2o = (2o ∪ {2o})
6 df-tp 4633 . . 3 {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}})
74, 5, 63eqtr4i 2769 . 2 suc 2o = {∅, {∅}, {∅, {∅}}}
81, 7eqtri 2759 1 3o = {∅, {∅}, {∅, {∅}}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3946  c0 4322  {csn 4628  {cpr 4630  {ctp 4632  suc csuc 6366  2oc2o 8466  3oc3o 8467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3951  df-un 3953  df-nul 4323  df-sn 4629  df-pr 4631  df-tp 4633  df-suc 6370  df-1o 8472  df-2o 8473  df-3o 8474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator