| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| 3onn | ⊢ 3o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3o 8439 | . 2 ⊢ 3o = suc 2o | |
| 2 | 2onn 8609 | . . 3 ⊢ 2o ∈ ω | |
| 3 | peano2 7869 | . . 3 ⊢ (2o ∈ ω → suc 2o ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 2o ∈ ω |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 3o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 suc csuc 6337 ωcom 7845 2oc2o 8431 3oc3o 8432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 df-1o 8437 df-2o 8438 df-3o 8439 |
| This theorem is referenced by: 4onn 8612 hash4 14379 hash3tr 14463 oenord1ex 43311 3finon 43447 |
| Copyright terms: Public domain | W3C validator |