MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3onn Structured version   Visualization version   GIF version

Theorem 3onn 8700
Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
3onn 3o ∈ ω

Proof of Theorem 3onn
StepHypRef Expression
1 df-3o 8524 . 2 3o = suc 2o
2 2onn 8698 . . 3 2o ∈ ω
3 peano2 7929 . . 3 (2o ∈ ω → suc 2o ∈ ω)
42, 3ax-mp 5 . 2 suc 2o ∈ ω
51, 4eqeltri 2840 1 3o ∈ ω
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  suc csuc 6397  ωcom 7903  2oc2o 8516  3oc3o 8517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-om 7904  df-1o 8522  df-2o 8523  df-3o 8524
This theorem is referenced by:  4onn  8701  hash4  14456  hash3tr  14540  oenord1ex  43277  3finon  43413
  Copyright terms: Public domain W3C validator