MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3onn Structured version   Visualization version   GIF version

Theorem 3onn 8066
Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
3onn 3o ∈ ω

Proof of Theorem 3onn
StepHypRef Expression
1 df-3o 7905 . 2 3o = suc 2o
2 2onn 8065 . . 3 2o ∈ ω
3 peano2 7415 . . 3 (2o ∈ ω → suc 2o ∈ ω)
42, 3ax-mp 5 . 2 suc 2o ∈ ω
51, 4eqeltri 2855 1 3o ∈ ω
Colors of variables: wff setvar class
Syntax hints:  wcel 2051  suc csuc 6028  ωcom 7394  2oc2o 7897  3oc3o 7898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-tr 5027  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-om 7395  df-1o 7903  df-2o 7904  df-3o 7905
This theorem is referenced by:  4onn  8067  en4  8549  hash4  13579  hash3tr  13657
  Copyright terms: Public domain W3C validator