MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3onn Structured version   Visualization version   GIF version

Theorem 3onn 8585
Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
3onn 3o ∈ ω

Proof of Theorem 3onn
StepHypRef Expression
1 df-3o 8413 . 2 3o = suc 2o
2 2onn 8583 . . 3 2o ∈ ω
3 peano2 7846 . . 3 (2o ∈ ω → suc 2o ∈ ω)
42, 3ax-mp 5 . 2 suc 2o ∈ ω
51, 4eqeltri 2824 1 3o ∈ ω
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  suc csuc 6322  ωcom 7822  2oc2o 8405  3oc3o 8406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-om 7823  df-1o 8411  df-2o 8412  df-3o 8413
This theorem is referenced by:  4onn  8586  hash4  14348  hash3tr  14432  oenord1ex  43277  3finon  43413
  Copyright terms: Public domain W3C validator