|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 3onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) | 
| Ref | Expression | 
|---|---|
| 3onn | ⊢ 3o ∈ ω | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3o 8508 | . 2 ⊢ 3o = suc 2o | |
| 2 | 2onn 8680 | . . 3 ⊢ 2o ∈ ω | |
| 3 | peano2 7912 | . . 3 ⊢ (2o ∈ ω → suc 2o ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 2o ∈ ω | 
| 5 | 1, 4 | eqeltri 2837 | 1 ⊢ 3o ∈ ω | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 2108 suc csuc 6386 ωcom 7887 2oc2o 8500 3oc3o 8501 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-om 7888 df-1o 8506 df-2o 8507 df-3o 8508 | 
| This theorem is referenced by: 4onn 8683 hash4 14446 hash3tr 14530 oenord1ex 43328 3finon 43464 | 
| Copyright terms: Public domain | W3C validator |