MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3onn Structured version   Visualization version   GIF version

Theorem 3onn 8554
Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
3onn 3o ∈ ω

Proof of Theorem 3onn
StepHypRef Expression
1 df-3o 8382 . 2 3o = suc 2o
2 2onn 8552 . . 3 2o ∈ ω
3 peano2 7815 . . 3 (2o ∈ ω → suc 2o ∈ ω)
42, 3ax-mp 5 . 2 suc 2o ∈ ω
51, 4eqeltri 2827 1 3o ∈ ω
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  suc csuc 6303  ωcom 7791  2oc2o 8374  3oc3o 8375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-om 7792  df-1o 8380  df-2o 8381  df-3o 8382
This theorem is referenced by:  4onn  8555  hash4  14309  hash3tr  14393  oenord1ex  43348  3finon  43484
  Copyright terms: Public domain W3C validator