| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tr3dom | Structured version Visualization version GIF version | ||
| Description: An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.) |
| Ref | Expression |
|---|---|
| tr3dom | ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4576 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prex 5370 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | snex 5369 | . . . 4 ⊢ {𝐶} ∈ V | |
| 4 | undjudom 10054 | . . . 4 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶})) | |
| 5 | 2, 3, 4 | mp2an 692 | . . 3 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) |
| 6 | pr2dom 43560 | . . . . . 6 ⊢ {𝐴, 𝐵} ≼ 2o | |
| 7 | djudom1 10069 | . . . . . 6 ⊢ (({𝐴, 𝐵} ≼ 2o ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶})) | |
| 8 | 6, 3, 7 | mp2an 692 | . . . . 5 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) |
| 9 | sn1dom 43559 | . . . . . 6 ⊢ {𝐶} ≼ 1o | |
| 10 | 2on 8393 | . . . . . 6 ⊢ 2o ∈ On | |
| 11 | djudom2 10070 | . . . . . 6 ⊢ (({𝐶} ≼ 1o ∧ 2o ∈ On) → (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
| 13 | domtr 8924 | . . . . 5 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) ∧ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
| 14 | 8, 12, 13 | mp2an 692 | . . . 4 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
| 15 | 1on 8392 | . . . . . . 7 ⊢ 1o ∈ On | |
| 16 | onadju 10080 | . . . . . . 7 ⊢ ((2o ∈ On ∧ 1o ∈ On) → (2o +o 1o) ≈ (2o ⊔ 1o)) | |
| 17 | 10, 15, 16 | mp2an 692 | . . . . . 6 ⊢ (2o +o 1o) ≈ (2o ⊔ 1o) |
| 18 | 17 | ensymi 8921 | . . . . 5 ⊢ (2o ⊔ 1o) ≈ (2o +o 1o) |
| 19 | oa1suc 8441 | . . . . . . 7 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
| 20 | 10, 19 | ax-mp 5 | . . . . . 6 ⊢ (2o +o 1o) = suc 2o |
| 21 | df-3o 8382 | . . . . . 6 ⊢ 3o = suc 2o | |
| 22 | 20, 21 | eqtr4i 2757 | . . . . 5 ⊢ (2o +o 1o) = 3o |
| 23 | 18, 22 | breqtri 5111 | . . . 4 ⊢ (2o ⊔ 1o) ≈ 3o |
| 24 | domentr 8930 | . . . 4 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) ∧ (2o ⊔ 1o) ≈ 3o) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) | |
| 25 | 14, 23, 24 | mp2an 692 | . . 3 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o |
| 26 | domtr 8924 | . . 3 ⊢ ((({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) ∧ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o) | |
| 27 | 5, 25, 26 | mp2an 692 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o |
| 28 | 1, 27 | eqbrtri 5107 | 1 ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 {csn 4571 {cpr 4573 {ctp 4575 class class class wbr 5086 Oncon0 6301 suc csuc 6303 (class class class)co 7341 1oc1o 8373 2oc2o 8374 3oc3o 8375 +o coa 8377 ≈ cen 8861 ≼ cdom 8862 ⊔ cdju 9786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-3o 8382 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-dju 9789 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |