![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tr3dom | Structured version Visualization version GIF version |
Description: An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.) |
Ref | Expression |
---|---|
tr3dom | ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4653 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prex 5452 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
3 | snex 5451 | . . . 4 ⊢ {𝐶} ∈ V | |
4 | undjudom 10237 | . . . 4 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶})) | |
5 | 2, 3, 4 | mp2an 691 | . . 3 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) |
6 | pr2dom 43489 | . . . . . 6 ⊢ {𝐴, 𝐵} ≼ 2o | |
7 | djudom1 10252 | . . . . . 6 ⊢ (({𝐴, 𝐵} ≼ 2o ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶})) | |
8 | 6, 3, 7 | mp2an 691 | . . . . 5 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) |
9 | sn1dom 43488 | . . . . . 6 ⊢ {𝐶} ≼ 1o | |
10 | 2on 8536 | . . . . . 6 ⊢ 2o ∈ On | |
11 | djudom2 10253 | . . . . . 6 ⊢ (({𝐶} ≼ 1o ∧ 2o ∈ On) → (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
12 | 9, 10, 11 | mp2an 691 | . . . . 5 ⊢ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
13 | domtr 9067 | . . . . 5 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) ∧ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
14 | 8, 12, 13 | mp2an 691 | . . . 4 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
15 | 1on 8534 | . . . . . . 7 ⊢ 1o ∈ On | |
16 | onadju 10263 | . . . . . . 7 ⊢ ((2o ∈ On ∧ 1o ∈ On) → (2o +o 1o) ≈ (2o ⊔ 1o)) | |
17 | 10, 15, 16 | mp2an 691 | . . . . . 6 ⊢ (2o +o 1o) ≈ (2o ⊔ 1o) |
18 | 17 | ensymi 9064 | . . . . 5 ⊢ (2o ⊔ 1o) ≈ (2o +o 1o) |
19 | oa1suc 8587 | . . . . . . 7 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
20 | 10, 19 | ax-mp 5 | . . . . . 6 ⊢ (2o +o 1o) = suc 2o |
21 | df-3o 8524 | . . . . . 6 ⊢ 3o = suc 2o | |
22 | 20, 21 | eqtr4i 2771 | . . . . 5 ⊢ (2o +o 1o) = 3o |
23 | 18, 22 | breqtri 5191 | . . . 4 ⊢ (2o ⊔ 1o) ≈ 3o |
24 | domentr 9073 | . . . 4 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) ∧ (2o ⊔ 1o) ≈ 3o) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) | |
25 | 14, 23, 24 | mp2an 691 | . . 3 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o |
26 | domtr 9067 | . . 3 ⊢ ((({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) ∧ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o) | |
27 | 5, 25, 26 | mp2an 691 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o |
28 | 1, 27 | eqbrtri 5187 | 1 ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 {csn 4648 {cpr 4650 {ctp 4652 class class class wbr 5166 Oncon0 6395 suc csuc 6397 (class class class)co 7448 1oc1o 8515 2oc2o 8516 3oc3o 8517 +o coa 8519 ≈ cen 9000 ≼ cdom 9001 ⊔ cdju 9967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-3o 8524 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-dju 9970 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |