Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tr3dom Structured version   Visualization version   GIF version

Theorem tr3dom 42264
Description: An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.)
Assertion
Ref Expression
tr3dom {𝐴, 𝐵, 𝐶} ≼ 3o

Proof of Theorem tr3dom
StepHypRef Expression
1 df-tp 4632 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
2 prex 5431 . . . 4 {𝐴, 𝐵} ∈ V
3 snex 5430 . . . 4 {𝐶} ∈ V
4 undjudom 10158 . . . 4 (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}))
52, 3, 4mp2an 690 . . 3 ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶})
6 pr2dom 42263 . . . . . 6 {𝐴, 𝐵} ≼ 2o
7 djudom1 10173 . . . . . 6 (({𝐴, 𝐵} ≼ 2o ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}))
86, 3, 7mp2an 690 . . . . 5 ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶})
9 sn1dom 42262 . . . . . 6 {𝐶} ≼ 1o
10 2on 8476 . . . . . 6 2o ∈ On
11 djudom2 10174 . . . . . 6 (({𝐶} ≼ 1o ∧ 2o ∈ On) → (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o))
129, 10, 11mp2an 690 . . . . 5 (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)
13 domtr 8999 . . . . 5 ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) ∧ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o))
148, 12, 13mp2an 690 . . . 4 ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o)
15 1on 8474 . . . . . . 7 1o ∈ On
16 onadju 10184 . . . . . . 7 ((2o ∈ On ∧ 1o ∈ On) → (2o +o 1o) ≈ (2o ⊔ 1o))
1710, 15, 16mp2an 690 . . . . . 6 (2o +o 1o) ≈ (2o ⊔ 1o)
1817ensymi 8996 . . . . 5 (2o ⊔ 1o) ≈ (2o +o 1o)
19 oa1suc 8527 . . . . . . 7 (2o ∈ On → (2o +o 1o) = suc 2o)
2010, 19ax-mp 5 . . . . . 6 (2o +o 1o) = suc 2o
21 df-3o 8464 . . . . . 6 3o = suc 2o
2220, 21eqtr4i 2763 . . . . 5 (2o +o 1o) = 3o
2318, 22breqtri 5172 . . . 4 (2o ⊔ 1o) ≈ 3o
24 domentr 9005 . . . 4 ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) ∧ (2o ⊔ 1o) ≈ 3o) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o)
2514, 23, 24mp2an 690 . . 3 ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o
26 domtr 8999 . . 3 ((({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) ∧ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o)
275, 25, 26mp2an 690 . 2 ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o
281, 27eqbrtri 5168 1 {𝐴, 𝐵, 𝐶} ≼ 3o
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  Vcvv 3474  cun 3945  {csn 4627  {cpr 4629  {ctp 4631   class class class wbr 5147  Oncon0 6361  suc csuc 6363  (class class class)co 7405  1oc1o 8455  2oc2o 8456  3oc3o 8457   +o coa 8459  cen 8932  cdom 8933  cdju 9889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-3o 8464  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-dju 9892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator