Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tr3dom | Structured version Visualization version GIF version |
Description: An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.) |
Ref | Expression |
---|---|
tr3dom | ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4563 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prex 5350 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
3 | snex 5349 | . . . 4 ⊢ {𝐶} ∈ V | |
4 | undjudom 9854 | . . . 4 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶})) | |
5 | 2, 3, 4 | mp2an 688 | . . 3 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) |
6 | pr2dom 41032 | . . . . . 6 ⊢ {𝐴, 𝐵} ≼ 2o | |
7 | djudom1 9869 | . . . . . 6 ⊢ (({𝐴, 𝐵} ≼ 2o ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶})) | |
8 | 6, 3, 7 | mp2an 688 | . . . . 5 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) |
9 | sn1dom 41031 | . . . . . 6 ⊢ {𝐶} ≼ 1o | |
10 | 2on 8275 | . . . . . 6 ⊢ 2o ∈ On | |
11 | djudom2 9870 | . . . . . 6 ⊢ (({𝐶} ≼ 1o ∧ 2o ∈ On) → (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
12 | 9, 10, 11 | mp2an 688 | . . . . 5 ⊢ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
13 | domtr 8748 | . . . . 5 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) ∧ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
14 | 8, 12, 13 | mp2an 688 | . . . 4 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
15 | 1on 8274 | . . . . . . 7 ⊢ 1o ∈ On | |
16 | onadju 9880 | . . . . . . 7 ⊢ ((2o ∈ On ∧ 1o ∈ On) → (2o +o 1o) ≈ (2o ⊔ 1o)) | |
17 | 10, 15, 16 | mp2an 688 | . . . . . 6 ⊢ (2o +o 1o) ≈ (2o ⊔ 1o) |
18 | 17 | ensymi 8745 | . . . . 5 ⊢ (2o ⊔ 1o) ≈ (2o +o 1o) |
19 | oa1suc 8323 | . . . . . . 7 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
20 | 10, 19 | ax-mp 5 | . . . . . 6 ⊢ (2o +o 1o) = suc 2o |
21 | df-3o 8269 | . . . . . 6 ⊢ 3o = suc 2o | |
22 | 20, 21 | eqtr4i 2769 | . . . . 5 ⊢ (2o +o 1o) = 3o |
23 | 18, 22 | breqtri 5095 | . . . 4 ⊢ (2o ⊔ 1o) ≈ 3o |
24 | domentr 8754 | . . . 4 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) ∧ (2o ⊔ 1o) ≈ 3o) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) | |
25 | 14, 23, 24 | mp2an 688 | . . 3 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o |
26 | domtr 8748 | . . 3 ⊢ ((({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) ∧ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o) | |
27 | 5, 25, 26 | mp2an 688 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o |
28 | 1, 27 | eqbrtri 5091 | 1 ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 {csn 4558 {cpr 4560 {ctp 4562 class class class wbr 5070 Oncon0 6251 suc csuc 6253 (class class class)co 7255 1oc1o 8260 2oc2o 8261 3oc3o 8262 +o coa 8264 ≈ cen 8688 ≼ cdom 8689 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-3o 8269 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-dju 9590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |