Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tr3dom | Structured version Visualization version GIF version |
Description: An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.) |
Ref | Expression |
---|---|
tr3dom | ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4566 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prex 5355 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
3 | snex 5354 | . . . 4 ⊢ {𝐶} ∈ V | |
4 | undjudom 9923 | . . . 4 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶})) | |
5 | 2, 3, 4 | mp2an 689 | . . 3 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) |
6 | pr2dom 41134 | . . . . . 6 ⊢ {𝐴, 𝐵} ≼ 2o | |
7 | djudom1 9938 | . . . . . 6 ⊢ (({𝐴, 𝐵} ≼ 2o ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶})) | |
8 | 6, 3, 7 | mp2an 689 | . . . . 5 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) |
9 | sn1dom 41133 | . . . . . 6 ⊢ {𝐶} ≼ 1o | |
10 | 2on 8311 | . . . . . 6 ⊢ 2o ∈ On | |
11 | djudom2 9939 | . . . . . 6 ⊢ (({𝐶} ≼ 1o ∧ 2o ∈ On) → (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
12 | 9, 10, 11 | mp2an 689 | . . . . 5 ⊢ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
13 | domtr 8793 | . . . . 5 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) ∧ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
14 | 8, 12, 13 | mp2an 689 | . . . 4 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
15 | 1on 8309 | . . . . . . 7 ⊢ 1o ∈ On | |
16 | onadju 9949 | . . . . . . 7 ⊢ ((2o ∈ On ∧ 1o ∈ On) → (2o +o 1o) ≈ (2o ⊔ 1o)) | |
17 | 10, 15, 16 | mp2an 689 | . . . . . 6 ⊢ (2o +o 1o) ≈ (2o ⊔ 1o) |
18 | 17 | ensymi 8790 | . . . . 5 ⊢ (2o ⊔ 1o) ≈ (2o +o 1o) |
19 | oa1suc 8361 | . . . . . . 7 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
20 | 10, 19 | ax-mp 5 | . . . . . 6 ⊢ (2o +o 1o) = suc 2o |
21 | df-3o 8299 | . . . . . 6 ⊢ 3o = suc 2o | |
22 | 20, 21 | eqtr4i 2769 | . . . . 5 ⊢ (2o +o 1o) = 3o |
23 | 18, 22 | breqtri 5099 | . . . 4 ⊢ (2o ⊔ 1o) ≈ 3o |
24 | domentr 8799 | . . . 4 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) ∧ (2o ⊔ 1o) ≈ 3o) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) | |
25 | 14, 23, 24 | mp2an 689 | . . 3 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o |
26 | domtr 8793 | . . 3 ⊢ ((({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) ∧ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o) | |
27 | 5, 25, 26 | mp2an 689 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o |
28 | 1, 27 | eqbrtri 5095 | 1 ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 {csn 4561 {cpr 4563 {ctp 4565 class class class wbr 5074 Oncon0 6266 suc csuc 6268 (class class class)co 7275 1oc1o 8290 2oc2o 8291 3oc3o 8292 +o coa 8294 ≈ cen 8730 ≼ cdom 8731 ⊔ cdju 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-3o 8299 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |