| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tr3dom | Structured version Visualization version GIF version | ||
| Description: An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.) |
| Ref | Expression |
|---|---|
| tr3dom | ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4590 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prex 5387 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | snex 5386 | . . . 4 ⊢ {𝐶} ∈ V | |
| 4 | undjudom 10097 | . . . 4 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶})) | |
| 5 | 2, 3, 4 | mp2an 692 | . . 3 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) |
| 6 | pr2dom 43489 | . . . . . 6 ⊢ {𝐴, 𝐵} ≼ 2o | |
| 7 | djudom1 10112 | . . . . . 6 ⊢ (({𝐴, 𝐵} ≼ 2o ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶})) | |
| 8 | 6, 3, 7 | mp2an 692 | . . . . 5 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) |
| 9 | sn1dom 43488 | . . . . . 6 ⊢ {𝐶} ≼ 1o | |
| 10 | 2on 8424 | . . . . . 6 ⊢ 2o ∈ On | |
| 11 | djudom2 10113 | . . . . . 6 ⊢ (({𝐶} ≼ 1o ∧ 2o ∈ On) → (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
| 13 | domtr 8955 | . . . . 5 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) ∧ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
| 14 | 8, 12, 13 | mp2an 692 | . . . 4 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
| 15 | 1on 8423 | . . . . . . 7 ⊢ 1o ∈ On | |
| 16 | onadju 10123 | . . . . . . 7 ⊢ ((2o ∈ On ∧ 1o ∈ On) → (2o +o 1o) ≈ (2o ⊔ 1o)) | |
| 17 | 10, 15, 16 | mp2an 692 | . . . . . 6 ⊢ (2o +o 1o) ≈ (2o ⊔ 1o) |
| 18 | 17 | ensymi 8952 | . . . . 5 ⊢ (2o ⊔ 1o) ≈ (2o +o 1o) |
| 19 | oa1suc 8472 | . . . . . . 7 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
| 20 | 10, 19 | ax-mp 5 | . . . . . 6 ⊢ (2o +o 1o) = suc 2o |
| 21 | df-3o 8413 | . . . . . 6 ⊢ 3o = suc 2o | |
| 22 | 20, 21 | eqtr4i 2755 | . . . . 5 ⊢ (2o +o 1o) = 3o |
| 23 | 18, 22 | breqtri 5127 | . . . 4 ⊢ (2o ⊔ 1o) ≈ 3o |
| 24 | domentr 8961 | . . . 4 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) ∧ (2o ⊔ 1o) ≈ 3o) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) | |
| 25 | 14, 23, 24 | mp2an 692 | . . 3 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o |
| 26 | domtr 8955 | . . 3 ⊢ ((({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) ∧ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o) | |
| 27 | 5, 25, 26 | mp2an 692 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o |
| 28 | 1, 27 | eqbrtri 5123 | 1 ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 {csn 4585 {cpr 4587 {ctp 4589 class class class wbr 5102 Oncon0 6320 suc csuc 6322 (class class class)co 7369 1oc1o 8404 2oc2o 8405 3oc3o 8406 +o coa 8408 ≈ cen 8892 ≼ cdom 8893 ⊔ cdju 9827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-3o 8413 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-dju 9830 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |