| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tr3dom | Structured version Visualization version GIF version | ||
| Description: An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.) |
| Ref | Expression |
|---|---|
| tr3dom | ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4582 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prex 5376 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | snex 5375 | . . . 4 ⊢ {𝐶} ∈ V | |
| 4 | undjudom 10062 | . . . 4 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶})) | |
| 5 | 2, 3, 4 | mp2an 692 | . . 3 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) |
| 6 | pr2dom 43500 | . . . . . 6 ⊢ {𝐴, 𝐵} ≼ 2o | |
| 7 | djudom1 10077 | . . . . . 6 ⊢ (({𝐴, 𝐵} ≼ 2o ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶})) | |
| 8 | 6, 3, 7 | mp2an 692 | . . . . 5 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) |
| 9 | sn1dom 43499 | . . . . . 6 ⊢ {𝐶} ≼ 1o | |
| 10 | 2on 8401 | . . . . . 6 ⊢ 2o ∈ On | |
| 11 | djudom2 10078 | . . . . . 6 ⊢ (({𝐶} ≼ 1o ∧ 2o ∈ On) → (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
| 13 | domtr 8932 | . . . . 5 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) ∧ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
| 14 | 8, 12, 13 | mp2an 692 | . . . 4 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
| 15 | 1on 8400 | . . . . . . 7 ⊢ 1o ∈ On | |
| 16 | onadju 10088 | . . . . . . 7 ⊢ ((2o ∈ On ∧ 1o ∈ On) → (2o +o 1o) ≈ (2o ⊔ 1o)) | |
| 17 | 10, 15, 16 | mp2an 692 | . . . . . 6 ⊢ (2o +o 1o) ≈ (2o ⊔ 1o) |
| 18 | 17 | ensymi 8929 | . . . . 5 ⊢ (2o ⊔ 1o) ≈ (2o +o 1o) |
| 19 | oa1suc 8449 | . . . . . . 7 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
| 20 | 10, 19 | ax-mp 5 | . . . . . 6 ⊢ (2o +o 1o) = suc 2o |
| 21 | df-3o 8390 | . . . . . 6 ⊢ 3o = suc 2o | |
| 22 | 20, 21 | eqtr4i 2755 | . . . . 5 ⊢ (2o +o 1o) = 3o |
| 23 | 18, 22 | breqtri 5117 | . . . 4 ⊢ (2o ⊔ 1o) ≈ 3o |
| 24 | domentr 8938 | . . . 4 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) ∧ (2o ⊔ 1o) ≈ 3o) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) | |
| 25 | 14, 23, 24 | mp2an 692 | . . 3 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o |
| 26 | domtr 8932 | . . 3 ⊢ ((({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) ∧ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o) | |
| 27 | 5, 25, 26 | mp2an 692 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o |
| 28 | 1, 27 | eqbrtri 5113 | 1 ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ cun 3901 {csn 4577 {cpr 4579 {ctp 4581 class class class wbr 5092 Oncon0 6307 suc csuc 6309 (class class class)co 7349 1oc1o 8381 2oc2o 8382 3oc3o 8383 +o coa 8385 ≈ cen 8869 ≼ cdom 8870 ⊔ cdju 9794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-3o 8390 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-dju 9797 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |