| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tr3dom | Structured version Visualization version GIF version | ||
| Description: An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.) |
| Ref | Expression |
|---|---|
| tr3dom | ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4606 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prex 5407 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | snex 5406 | . . . 4 ⊢ {𝐶} ∈ V | |
| 4 | undjudom 10182 | . . . 4 ⊢ (({𝐴, 𝐵} ∈ V ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶})) | |
| 5 | 2, 3, 4 | mp2an 692 | . . 3 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) |
| 6 | pr2dom 43551 | . . . . . 6 ⊢ {𝐴, 𝐵} ≼ 2o | |
| 7 | djudom1 10197 | . . . . . 6 ⊢ (({𝐴, 𝐵} ≼ 2o ∧ {𝐶} ∈ V) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶})) | |
| 8 | 6, 3, 7 | mp2an 692 | . . . . 5 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) |
| 9 | sn1dom 43550 | . . . . . 6 ⊢ {𝐶} ≼ 1o | |
| 10 | 2on 8494 | . . . . . 6 ⊢ 2o ∈ On | |
| 11 | djudom2 10198 | . . . . . 6 ⊢ (({𝐶} ≼ 1o ∧ 2o ∈ On) → (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
| 13 | domtr 9021 | . . . . 5 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ {𝐶}) ∧ (2o ⊔ {𝐶}) ≼ (2o ⊔ 1o)) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o)) | |
| 14 | 8, 12, 13 | mp2an 692 | . . . 4 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) |
| 15 | 1on 8492 | . . . . . . 7 ⊢ 1o ∈ On | |
| 16 | onadju 10208 | . . . . . . 7 ⊢ ((2o ∈ On ∧ 1o ∈ On) → (2o +o 1o) ≈ (2o ⊔ 1o)) | |
| 17 | 10, 15, 16 | mp2an 692 | . . . . . 6 ⊢ (2o +o 1o) ≈ (2o ⊔ 1o) |
| 18 | 17 | ensymi 9018 | . . . . 5 ⊢ (2o ⊔ 1o) ≈ (2o +o 1o) |
| 19 | oa1suc 8543 | . . . . . . 7 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
| 20 | 10, 19 | ax-mp 5 | . . . . . 6 ⊢ (2o +o 1o) = suc 2o |
| 21 | df-3o 8482 | . . . . . 6 ⊢ 3o = suc 2o | |
| 22 | 20, 21 | eqtr4i 2761 | . . . . 5 ⊢ (2o +o 1o) = 3o |
| 23 | 18, 22 | breqtri 5144 | . . . 4 ⊢ (2o ⊔ 1o) ≈ 3o |
| 24 | domentr 9027 | . . . 4 ⊢ ((({𝐴, 𝐵} ⊔ {𝐶}) ≼ (2o ⊔ 1o) ∧ (2o ⊔ 1o) ≈ 3o) → ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) | |
| 25 | 14, 23, 24 | mp2an 692 | . . 3 ⊢ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o |
| 26 | domtr 9021 | . . 3 ⊢ ((({𝐴, 𝐵} ∪ {𝐶}) ≼ ({𝐴, 𝐵} ⊔ {𝐶}) ∧ ({𝐴, 𝐵} ⊔ {𝐶}) ≼ 3o) → ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o) | |
| 27 | 5, 25, 26 | mp2an 692 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ≼ 3o |
| 28 | 1, 27 | eqbrtri 5140 | 1 ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 {csn 4601 {cpr 4603 {ctp 4605 class class class wbr 5119 Oncon0 6352 suc csuc 6354 (class class class)co 7405 1oc1o 8473 2oc2o 8474 3oc3o 8475 +o coa 8477 ≈ cen 8956 ≼ cdom 8957 ⊔ cdju 9912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-3o 8482 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-dju 9915 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |