| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o2p2e4 | Structured version Visualization version GIF version | ||
| Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6341. For the usual proof using complex numbers, see 2p2e4 12323. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5237, from a comment by Sophie. (Revised by SN, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| o2p2e4 | ⊢ (2o +o 2o) = 4o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8450 | . . . 4 ⊢ 2o ∈ On | |
| 2 | df-1o 8437 | . . . . 5 ⊢ 1o = suc ∅ | |
| 3 | peano1 7868 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 4 | peano2 7869 | . . . . . 6 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ suc ∅ ∈ ω |
| 6 | 2, 5 | eqeltri 2825 | . . . 4 ⊢ 1o ∈ ω |
| 7 | onasuc 8495 | . . . 4 ⊢ ((2o ∈ On ∧ 1o ∈ ω) → (2o +o suc 1o) = suc (2o +o 1o)) | |
| 8 | 1, 6, 7 | mp2an 692 | . . 3 ⊢ (2o +o suc 1o) = suc (2o +o 1o) |
| 9 | df-2o 8438 | . . . 4 ⊢ 2o = suc 1o | |
| 10 | 9 | oveq2i 7401 | . . 3 ⊢ (2o +o 2o) = (2o +o suc 1o) |
| 11 | df-3o 8439 | . . . . 5 ⊢ 3o = suc 2o | |
| 12 | oa1suc 8498 | . . . . . 6 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
| 13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ (2o +o 1o) = suc 2o |
| 14 | 11, 13 | eqtr4i 2756 | . . . 4 ⊢ 3o = (2o +o 1o) |
| 15 | suceq 6403 | . . . 4 ⊢ (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ suc 3o = suc (2o +o 1o) |
| 17 | 8, 10, 16 | 3eqtr4i 2763 | . 2 ⊢ (2o +o 2o) = suc 3o |
| 18 | df-4o 8440 | . 2 ⊢ 4o = suc 3o | |
| 19 | 17, 18 | eqtr4i 2756 | 1 ⊢ (2o +o 2o) = 4o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4299 Oncon0 6335 suc csuc 6337 (class class class)co 7390 ωcom 7845 1oc1o 8430 2oc2o 8431 3oc3o 8432 4oc4o 8433 +o coa 8434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-3o 8439 df-4o 8440 df-oadd 8441 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |