| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o2p2e4 | Structured version Visualization version GIF version | ||
| Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6338. For the usual proof using complex numbers, see 2p2e4 12316. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5234, from a comment by Sophie. (Revised by SN, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| o2p2e4 | ⊢ (2o +o 2o) = 4o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8447 | . . . 4 ⊢ 2o ∈ On | |
| 2 | df-1o 8434 | . . . . 5 ⊢ 1o = suc ∅ | |
| 3 | peano1 7865 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 4 | peano2 7866 | . . . . . 6 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ suc ∅ ∈ ω |
| 6 | 2, 5 | eqeltri 2824 | . . . 4 ⊢ 1o ∈ ω |
| 7 | onasuc 8492 | . . . 4 ⊢ ((2o ∈ On ∧ 1o ∈ ω) → (2o +o suc 1o) = suc (2o +o 1o)) | |
| 8 | 1, 6, 7 | mp2an 692 | . . 3 ⊢ (2o +o suc 1o) = suc (2o +o 1o) |
| 9 | df-2o 8435 | . . . 4 ⊢ 2o = suc 1o | |
| 10 | 9 | oveq2i 7398 | . . 3 ⊢ (2o +o 2o) = (2o +o suc 1o) |
| 11 | df-3o 8436 | . . . . 5 ⊢ 3o = suc 2o | |
| 12 | oa1suc 8495 | . . . . . 6 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
| 13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ (2o +o 1o) = suc 2o |
| 14 | 11, 13 | eqtr4i 2755 | . . . 4 ⊢ 3o = (2o +o 1o) |
| 15 | suceq 6400 | . . . 4 ⊢ (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ suc 3o = suc (2o +o 1o) |
| 17 | 8, 10, 16 | 3eqtr4i 2762 | . 2 ⊢ (2o +o 2o) = suc 3o |
| 18 | df-4o 8437 | . 2 ⊢ 4o = suc 3o | |
| 19 | 17, 18 | eqtr4i 2755 | 1 ⊢ (2o +o 2o) = 4o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4296 Oncon0 6332 suc csuc 6334 (class class class)co 7387 ωcom 7842 1oc1o 8427 2oc2o 8428 3oc3o 8429 4oc4o 8430 +o coa 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-3o 8436 df-4o 8437 df-oadd 8438 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |