MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o2p2e4 Structured version   Visualization version   GIF version

Theorem o2p2e4 8149
Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6165. For the usual proof using complex numbers, see 2p2e4 11760. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5154, from a comment by Sophie. (Revised by SN, 23-Mar-2024.)
Assertion
Ref Expression
o2p2e4 (2o +o 2o) = 4o

Proof of Theorem o2p2e4
StepHypRef Expression
1 2on 8094 . . . 4 2o ∈ On
2 df-1o 8085 . . . . 5 1o = suc ∅
3 peano1 7581 . . . . . 6 ∅ ∈ ω
4 peano2 7582 . . . . . 6 (∅ ∈ ω → suc ∅ ∈ ω)
53, 4ax-mp 5 . . . . 5 suc ∅ ∈ ω
62, 5eqeltri 2886 . . . 4 1o ∈ ω
7 onasuc 8136 . . . 4 ((2o ∈ On ∧ 1o ∈ ω) → (2o +o suc 1o) = suc (2o +o 1o))
81, 6, 7mp2an 691 . . 3 (2o +o suc 1o) = suc (2o +o 1o)
9 df-2o 8086 . . . 4 2o = suc 1o
109oveq2i 7146 . . 3 (2o +o 2o) = (2o +o suc 1o)
11 df-3o 8087 . . . . 5 3o = suc 2o
12 oa1suc 8139 . . . . . 6 (2o ∈ On → (2o +o 1o) = suc 2o)
131, 12ax-mp 5 . . . . 5 (2o +o 1o) = suc 2o
1411, 13eqtr4i 2824 . . . 4 3o = (2o +o 1o)
15 suceq 6224 . . . 4 (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o))
1614, 15ax-mp 5 . . 3 suc 3o = suc (2o +o 1o)
178, 10, 163eqtr4i 2831 . 2 (2o +o 2o) = suc 3o
18 df-4o 8088 . 2 4o = suc 3o
1917, 18eqtr4i 2824 1 (2o +o 2o) = 4o
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  c0 4243  Oncon0 6159  suc csuc 6161  (class class class)co 7135  ωcom 7560  1oc1o 8078  2oc2o 8079  3oc3o 8080  4oc4o 8081   +o coa 8082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-3o 8087  df-4o 8088  df-oadd 8089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator