| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o2p2e4 | Structured version Visualization version GIF version | ||
| Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6317. For the usual proof using complex numbers, see 2p2e4 12262. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5219, from a comment by Sophie. (Revised by SN, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| o2p2e4 | ⊢ (2o +o 2o) = 4o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8404 | . . . 4 ⊢ 2o ∈ On | |
| 2 | df-1o 8391 | . . . . 5 ⊢ 1o = suc ∅ | |
| 3 | peano1 7825 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 4 | peano2 7826 | . . . . . 6 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ suc ∅ ∈ ω |
| 6 | 2, 5 | eqeltri 2829 | . . . 4 ⊢ 1o ∈ ω |
| 7 | onasuc 8449 | . . . 4 ⊢ ((2o ∈ On ∧ 1o ∈ ω) → (2o +o suc 1o) = suc (2o +o 1o)) | |
| 8 | 1, 6, 7 | mp2an 692 | . . 3 ⊢ (2o +o suc 1o) = suc (2o +o 1o) |
| 9 | df-2o 8392 | . . . 4 ⊢ 2o = suc 1o | |
| 10 | 9 | oveq2i 7363 | . . 3 ⊢ (2o +o 2o) = (2o +o suc 1o) |
| 11 | df-3o 8393 | . . . . 5 ⊢ 3o = suc 2o | |
| 12 | oa1suc 8452 | . . . . . 6 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
| 13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ (2o +o 1o) = suc 2o |
| 14 | 11, 13 | eqtr4i 2759 | . . . 4 ⊢ 3o = (2o +o 1o) |
| 15 | suceq 6379 | . . . 4 ⊢ (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ suc 3o = suc (2o +o 1o) |
| 17 | 8, 10, 16 | 3eqtr4i 2766 | . 2 ⊢ (2o +o 2o) = suc 3o |
| 18 | df-4o 8394 | . 2 ⊢ 4o = suc 3o | |
| 19 | 17, 18 | eqtr4i 2759 | 1 ⊢ (2o +o 2o) = 4o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∅c0 4282 Oncon0 6311 suc csuc 6313 (class class class)co 7352 ωcom 7802 1oc1o 8384 2oc2o 8385 3oc3o 8386 4oc4o 8387 +o coa 8388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-3o 8393 df-4o 8394 df-oadd 8395 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |