| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o2p2e4 | Structured version Visualization version GIF version | ||
| Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6312. For the usual proof using complex numbers, see 2p2e4 12255. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5217, from a comment by Sophie. (Revised by SN, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| o2p2e4 | ⊢ (2o +o 2o) = 4o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8398 | . . . 4 ⊢ 2o ∈ On | |
| 2 | df-1o 8385 | . . . . 5 ⊢ 1o = suc ∅ | |
| 3 | peano1 7819 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 4 | peano2 7820 | . . . . . 6 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ suc ∅ ∈ ω |
| 6 | 2, 5 | eqeltri 2827 | . . . 4 ⊢ 1o ∈ ω |
| 7 | onasuc 8443 | . . . 4 ⊢ ((2o ∈ On ∧ 1o ∈ ω) → (2o +o suc 1o) = suc (2o +o 1o)) | |
| 8 | 1, 6, 7 | mp2an 692 | . . 3 ⊢ (2o +o suc 1o) = suc (2o +o 1o) |
| 9 | df-2o 8386 | . . . 4 ⊢ 2o = suc 1o | |
| 10 | 9 | oveq2i 7357 | . . 3 ⊢ (2o +o 2o) = (2o +o suc 1o) |
| 11 | df-3o 8387 | . . . . 5 ⊢ 3o = suc 2o | |
| 12 | oa1suc 8446 | . . . . . 6 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
| 13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ (2o +o 1o) = suc 2o |
| 14 | 11, 13 | eqtr4i 2757 | . . . 4 ⊢ 3o = (2o +o 1o) |
| 15 | suceq 6374 | . . . 4 ⊢ (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ suc 3o = suc (2o +o 1o) |
| 17 | 8, 10, 16 | 3eqtr4i 2764 | . 2 ⊢ (2o +o 2o) = suc 3o |
| 18 | df-4o 8388 | . 2 ⊢ 4o = suc 3o | |
| 19 | 17, 18 | eqtr4i 2757 | 1 ⊢ (2o +o 2o) = 4o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∅c0 4283 Oncon0 6306 suc csuc 6308 (class class class)co 7346 ωcom 7796 1oc1o 8378 2oc2o 8379 3oc3o 8380 4oc4o 8381 +o coa 8382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-3o 8387 df-4o 8388 df-oadd 8389 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |