| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o2p2e4 | Structured version Visualization version GIF version | ||
| Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6363. For the usual proof using complex numbers, see 2p2e4 12380. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5254, from a comment by Sophie. (Revised by SN, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| o2p2e4 | ⊢ (2o +o 2o) = 4o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8499 | . . . 4 ⊢ 2o ∈ On | |
| 2 | df-1o 8485 | . . . . 5 ⊢ 1o = suc ∅ | |
| 3 | peano1 7889 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 4 | peano2 7891 | . . . . . 6 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ suc ∅ ∈ ω |
| 6 | 2, 5 | eqeltri 2831 | . . . 4 ⊢ 1o ∈ ω |
| 7 | onasuc 8545 | . . . 4 ⊢ ((2o ∈ On ∧ 1o ∈ ω) → (2o +o suc 1o) = suc (2o +o 1o)) | |
| 8 | 1, 6, 7 | mp2an 692 | . . 3 ⊢ (2o +o suc 1o) = suc (2o +o 1o) |
| 9 | df-2o 8486 | . . . 4 ⊢ 2o = suc 1o | |
| 10 | 9 | oveq2i 7421 | . . 3 ⊢ (2o +o 2o) = (2o +o suc 1o) |
| 11 | df-3o 8487 | . . . . 5 ⊢ 3o = suc 2o | |
| 12 | oa1suc 8548 | . . . . . 6 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
| 13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ (2o +o 1o) = suc 2o |
| 14 | 11, 13 | eqtr4i 2762 | . . . 4 ⊢ 3o = (2o +o 1o) |
| 15 | suceq 6424 | . . . 4 ⊢ (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ suc 3o = suc (2o +o 1o) |
| 17 | 8, 10, 16 | 3eqtr4i 2769 | . 2 ⊢ (2o +o 2o) = suc 3o |
| 18 | df-4o 8488 | . 2 ⊢ 4o = suc 3o | |
| 19 | 17, 18 | eqtr4i 2762 | 1 ⊢ (2o +o 2o) = 4o |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4313 Oncon0 6357 suc csuc 6359 (class class class)co 7410 ωcom 7866 1oc1o 8478 2oc2o 8479 3oc3o 8480 4oc4o 8481 +o coa 8482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-3o 8487 df-4o 8488 df-oadd 8489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |