Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > o2p2e4 | Structured version Visualization version GIF version |
Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6316. For the usual proof using complex numbers, see 2p2e4 12218. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5237, from a comment by Sophie. (Revised by SN, 23-Mar-2024.) |
Ref | Expression |
---|---|
o2p2e4 | ⊢ (2o +o 2o) = 4o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8390 | . . . 4 ⊢ 2o ∈ On | |
2 | df-1o 8376 | . . . . 5 ⊢ 1o = suc ∅ | |
3 | peano1 7812 | . . . . . 6 ⊢ ∅ ∈ ω | |
4 | peano2 7814 | . . . . . 6 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ suc ∅ ∈ ω |
6 | 2, 5 | eqeltri 2834 | . . . 4 ⊢ 1o ∈ ω |
7 | onasuc 8438 | . . . 4 ⊢ ((2o ∈ On ∧ 1o ∈ ω) → (2o +o suc 1o) = suc (2o +o 1o)) | |
8 | 1, 6, 7 | mp2an 690 | . . 3 ⊢ (2o +o suc 1o) = suc (2o +o 1o) |
9 | df-2o 8377 | . . . 4 ⊢ 2o = suc 1o | |
10 | 9 | oveq2i 7357 | . . 3 ⊢ (2o +o 2o) = (2o +o suc 1o) |
11 | df-3o 8378 | . . . . 5 ⊢ 3o = suc 2o | |
12 | oa1suc 8441 | . . . . . 6 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ (2o +o 1o) = suc 2o |
14 | 11, 13 | eqtr4i 2768 | . . . 4 ⊢ 3o = (2o +o 1o) |
15 | suceq 6376 | . . . 4 ⊢ (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ suc 3o = suc (2o +o 1o) |
17 | 8, 10, 16 | 3eqtr4i 2775 | . 2 ⊢ (2o +o 2o) = suc 3o |
18 | df-4o 8379 | . 2 ⊢ 4o = suc 3o | |
19 | 17, 18 | eqtr4i 2768 | 1 ⊢ (2o +o 2o) = 4o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ∅c0 4277 Oncon0 6310 suc csuc 6312 (class class class)co 7346 ωcom 7789 1oc1o 8369 2oc2o 8370 3oc3o 8371 4oc4o 8372 +o coa 8373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-2o 8377 df-3o 8378 df-4o 8379 df-oadd 8380 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |