Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > o2p2e4 | Structured version Visualization version GIF version |
Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6269. For the usual proof using complex numbers, see 2p2e4 12091. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5213, from a comment by Sophie. (Revised by SN, 23-Mar-2024.) |
Ref | Expression |
---|---|
o2p2e4 | ⊢ (2o +o 2o) = 4o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8289 | . . . 4 ⊢ 2o ∈ On | |
2 | df-1o 8281 | . . . . 5 ⊢ 1o = suc ∅ | |
3 | peano1 7723 | . . . . . 6 ⊢ ∅ ∈ ω | |
4 | peano2 7724 | . . . . . 6 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ suc ∅ ∈ ω |
6 | 2, 5 | eqeltri 2836 | . . . 4 ⊢ 1o ∈ ω |
7 | onasuc 8334 | . . . 4 ⊢ ((2o ∈ On ∧ 1o ∈ ω) → (2o +o suc 1o) = suc (2o +o 1o)) | |
8 | 1, 6, 7 | mp2an 688 | . . 3 ⊢ (2o +o suc 1o) = suc (2o +o 1o) |
9 | df-2o 8282 | . . . 4 ⊢ 2o = suc 1o | |
10 | 9 | oveq2i 7279 | . . 3 ⊢ (2o +o 2o) = (2o +o suc 1o) |
11 | df-3o 8283 | . . . . 5 ⊢ 3o = suc 2o | |
12 | oa1suc 8337 | . . . . . 6 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ (2o +o 1o) = suc 2o |
14 | 11, 13 | eqtr4i 2770 | . . . 4 ⊢ 3o = (2o +o 1o) |
15 | suceq 6328 | . . . 4 ⊢ (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ suc 3o = suc (2o +o 1o) |
17 | 8, 10, 16 | 3eqtr4i 2777 | . 2 ⊢ (2o +o 2o) = suc 3o |
18 | df-4o 8284 | . 2 ⊢ 4o = suc 3o | |
19 | 17, 18 | eqtr4i 2770 | 1 ⊢ (2o +o 2o) = 4o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 ∅c0 4261 Oncon0 6263 suc csuc 6265 (class class class)co 7268 ωcom 7700 1oc1o 8274 2oc2o 8275 3oc3o 8276 4oc4o 8277 +o coa 8278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-3o 8283 df-4o 8284 df-oadd 8285 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |