![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o2p2e4 | Structured version Visualization version GIF version |
Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6370. For the usual proof using complex numbers, see 2p2e4 12354. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5285, from a comment by Sophie. (Revised by SN, 23-Mar-2024.) |
Ref | Expression |
---|---|
o2p2e4 | ⊢ (2o +o 2o) = 4o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8486 | . . . 4 ⊢ 2o ∈ On | |
2 | df-1o 8472 | . . . . 5 ⊢ 1o = suc ∅ | |
3 | peano1 7883 | . . . . . 6 ⊢ ∅ ∈ ω | |
4 | peano2 7885 | . . . . . 6 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ suc ∅ ∈ ω |
6 | 2, 5 | eqeltri 2828 | . . . 4 ⊢ 1o ∈ ω |
7 | onasuc 8534 | . . . 4 ⊢ ((2o ∈ On ∧ 1o ∈ ω) → (2o +o suc 1o) = suc (2o +o 1o)) | |
8 | 1, 6, 7 | mp2an 689 | . . 3 ⊢ (2o +o suc 1o) = suc (2o +o 1o) |
9 | df-2o 8473 | . . . 4 ⊢ 2o = suc 1o | |
10 | 9 | oveq2i 7423 | . . 3 ⊢ (2o +o 2o) = (2o +o suc 1o) |
11 | df-3o 8474 | . . . . 5 ⊢ 3o = suc 2o | |
12 | oa1suc 8537 | . . . . . 6 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ (2o +o 1o) = suc 2o |
14 | 11, 13 | eqtr4i 2762 | . . . 4 ⊢ 3o = (2o +o 1o) |
15 | suceq 6430 | . . . 4 ⊢ (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ suc 3o = suc (2o +o 1o) |
17 | 8, 10, 16 | 3eqtr4i 2769 | . 2 ⊢ (2o +o 2o) = suc 3o |
18 | df-4o 8475 | . 2 ⊢ 4o = suc 3o | |
19 | 17, 18 | eqtr4i 2762 | 1 ⊢ (2o +o 2o) = 4o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∅c0 4322 Oncon0 6364 suc csuc 6366 (class class class)co 7412 ωcom 7859 1oc1o 8465 2oc2o 8466 3oc3o 8467 4oc4o 8468 +o coa 8469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-3o 8474 df-4o 8475 df-oadd 8476 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |