Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > o2p2e4 | Structured version Visualization version GIF version |
Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6287. For the usual proof using complex numbers, see 2p2e4 12154. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5218, from a comment by Sophie. (Revised by SN, 23-Mar-2024.) |
Ref | Expression |
---|---|
o2p2e4 | ⊢ (2o +o 2o) = 4o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8342 | . . . 4 ⊢ 2o ∈ On | |
2 | df-1o 8328 | . . . . 5 ⊢ 1o = suc ∅ | |
3 | peano1 7767 | . . . . . 6 ⊢ ∅ ∈ ω | |
4 | peano2 7769 | . . . . . 6 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ suc ∅ ∈ ω |
6 | 2, 5 | eqeltri 2833 | . . . 4 ⊢ 1o ∈ ω |
7 | onasuc 8389 | . . . 4 ⊢ ((2o ∈ On ∧ 1o ∈ ω) → (2o +o suc 1o) = suc (2o +o 1o)) | |
8 | 1, 6, 7 | mp2an 690 | . . 3 ⊢ (2o +o suc 1o) = suc (2o +o 1o) |
9 | df-2o 8329 | . . . 4 ⊢ 2o = suc 1o | |
10 | 9 | oveq2i 7318 | . . 3 ⊢ (2o +o 2o) = (2o +o suc 1o) |
11 | df-3o 8330 | . . . . 5 ⊢ 3o = suc 2o | |
12 | oa1suc 8392 | . . . . . 6 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
13 | 1, 12 | ax-mp 5 | . . . . 5 ⊢ (2o +o 1o) = suc 2o |
14 | 11, 13 | eqtr4i 2767 | . . . 4 ⊢ 3o = (2o +o 1o) |
15 | suceq 6346 | . . . 4 ⊢ (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ suc 3o = suc (2o +o 1o) |
17 | 8, 10, 16 | 3eqtr4i 2774 | . 2 ⊢ (2o +o 2o) = suc 3o |
18 | df-4o 8331 | . 2 ⊢ 4o = suc 3o | |
19 | 17, 18 | eqtr4i 2767 | 1 ⊢ (2o +o 2o) = 4o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ∅c0 4262 Oncon0 6281 suc csuc 6283 (class class class)co 7307 ωcom 7744 1oc1o 8321 2oc2o 8322 3oc3o 8323 4oc4o 8324 +o coa 8325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-3o 8330 df-4o 8331 df-oadd 8332 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |