MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o2p2e4 Structured version   Visualization version   GIF version

Theorem o2p2e4 8558
Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6363. For the usual proof using complex numbers, see 2p2e4 12380. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5254, from a comment by Sophie. (Revised by SN, 23-Mar-2024.)
Assertion
Ref Expression
o2p2e4 (2o +o 2o) = 4o

Proof of Theorem o2p2e4
StepHypRef Expression
1 2on 8499 . . . 4 2o ∈ On
2 df-1o 8485 . . . . 5 1o = suc ∅
3 peano1 7889 . . . . . 6 ∅ ∈ ω
4 peano2 7891 . . . . . 6 (∅ ∈ ω → suc ∅ ∈ ω)
53, 4ax-mp 5 . . . . 5 suc ∅ ∈ ω
62, 5eqeltri 2831 . . . 4 1o ∈ ω
7 onasuc 8545 . . . 4 ((2o ∈ On ∧ 1o ∈ ω) → (2o +o suc 1o) = suc (2o +o 1o))
81, 6, 7mp2an 692 . . 3 (2o +o suc 1o) = suc (2o +o 1o)
9 df-2o 8486 . . . 4 2o = suc 1o
109oveq2i 7421 . . 3 (2o +o 2o) = (2o +o suc 1o)
11 df-3o 8487 . . . . 5 3o = suc 2o
12 oa1suc 8548 . . . . . 6 (2o ∈ On → (2o +o 1o) = suc 2o)
131, 12ax-mp 5 . . . . 5 (2o +o 1o) = suc 2o
1411, 13eqtr4i 2762 . . . 4 3o = (2o +o 1o)
15 suceq 6424 . . . 4 (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o))
1614, 15ax-mp 5 . . 3 suc 3o = suc (2o +o 1o)
178, 10, 163eqtr4i 2769 . 2 (2o +o 2o) = suc 3o
18 df-4o 8488 . 2 4o = suc 3o
1917, 18eqtr4i 2762 1 (2o +o 2o) = 4o
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  c0 4313  Oncon0 6357  suc csuc 6359  (class class class)co 7410  ωcom 7866  1oc1o 8478  2oc2o 8479  3oc3o 8480  4oc4o 8481   +o coa 8482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-3o 8487  df-4o 8488  df-oadd 8489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator