![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o2 | Structured version Visualization version GIF version |
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) |
Ref | Expression |
---|---|
df3o2 | ⊢ 3o = {∅, 1o, 2o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 8507 | . 2 ⊢ 3o = suc 2o | |
2 | df2o3 8513 | . . . 4 ⊢ 2o = {∅, 1o} | |
3 | 2 | uneq1i 4174 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, 1o} ∪ {2o}) |
4 | df-suc 6392 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
5 | df-tp 4636 | . . 3 ⊢ {∅, 1o, 2o} = ({∅, 1o} ∪ {2o}) | |
6 | 3, 4, 5 | 3eqtr4i 2773 | . 2 ⊢ suc 2o = {∅, 1o, 2o} |
7 | 1, 6 | eqtri 2763 | 1 ⊢ 3o = {∅, 1o, 2o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3961 ∅c0 4339 {csn 4631 {cpr 4633 {ctp 4635 suc csuc 6388 1oc1o 8498 2oc2o 8499 3oc3o 8500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-pr 4634 df-tp 4636 df-suc 6392 df-1o 8505 df-2o 8506 df-3o 8507 |
This theorem is referenced by: oenord1ex 43305 oenord1 43306 clsk1indlem4 44034 clsk1indlem1 44035 |
Copyright terms: Public domain | W3C validator |