Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o2 Structured version   Visualization version   GIF version

Theorem df3o2 42552
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o2 3o = {∅, 1o, 2o}

Proof of Theorem df3o2
StepHypRef Expression
1 df-3o 8463 . 2 3o = suc 2o
2 df2o3 8469 . . . 4 2o = {∅, 1o}
32uneq1i 4151 . . 3 (2o ∪ {2o}) = ({∅, 1o} ∪ {2o})
4 df-suc 6360 . . 3 suc 2o = (2o ∪ {2o})
5 df-tp 4625 . . 3 {∅, 1o, 2o} = ({∅, 1o} ∪ {2o})
63, 4, 53eqtr4i 2762 . 2 suc 2o = {∅, 1o, 2o}
71, 6eqtri 2752 1 3o = {∅, 1o, 2o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cun 3938  c0 4314  {csn 4620  {cpr 4622  {ctp 4624  suc csuc 6356  1oc1o 8454  2oc2o 8455  3oc3o 8456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-dif 3943  df-un 3945  df-nul 4315  df-pr 4623  df-tp 4625  df-suc 6360  df-1o 8461  df-2o 8462  df-3o 8463
This theorem is referenced by:  oenord1ex  42554  oenord1  42555  clsk1indlem4  43284  clsk1indlem1  43285
  Copyright terms: Public domain W3C validator