| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o2 | Structured version Visualization version GIF version | ||
| Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) |
| Ref | Expression |
|---|---|
| df3o2 | ⊢ 3o = {∅, 1o, 2o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3o 8487 | . 2 ⊢ 3o = suc 2o | |
| 2 | df2o3 8493 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 3 | 2 | uneq1i 4144 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, 1o} ∪ {2o}) |
| 4 | df-suc 6363 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
| 5 | df-tp 4611 | . . 3 ⊢ {∅, 1o, 2o} = ({∅, 1o} ∪ {2o}) | |
| 6 | 3, 4, 5 | 3eqtr4i 2769 | . 2 ⊢ suc 2o = {∅, 1o, 2o} |
| 7 | 1, 6 | eqtri 2759 | 1 ⊢ 3o = {∅, 1o, 2o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3929 ∅c0 4313 {csn 4606 {cpr 4608 {ctp 4610 suc csuc 6359 1oc1o 8478 2oc2o 8479 3oc3o 8480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-nul 4314 df-pr 4609 df-tp 4611 df-suc 6363 df-1o 8485 df-2o 8486 df-3o 8487 |
| This theorem is referenced by: oenord1ex 43306 oenord1 43307 clsk1indlem4 44035 clsk1indlem1 44036 |
| Copyright terms: Public domain | W3C validator |