Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o2 | Structured version Visualization version GIF version |
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) |
Ref | Expression |
---|---|
df3o2 | ⊢ 3o = {∅, 1o, 2o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 8299 | . 2 ⊢ 3o = suc 2o | |
2 | df2o3 8305 | . . . 4 ⊢ 2o = {∅, 1o} | |
3 | 2 | uneq1i 4093 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, 1o} ∪ {2o}) |
4 | df-suc 6272 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
5 | df-tp 4566 | . . 3 ⊢ {∅, 1o, 2o} = ({∅, 1o} ∪ {2o}) | |
6 | 3, 4, 5 | 3eqtr4i 2776 | . 2 ⊢ suc 2o = {∅, 1o, 2o} |
7 | 1, 6 | eqtri 2766 | 1 ⊢ 3o = {∅, 1o, 2o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 ∅c0 4256 {csn 4561 {cpr 4563 {ctp 4565 suc csuc 6268 1oc1o 8290 2oc2o 8291 3oc3o 8292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-pr 4564 df-tp 4566 df-suc 6272 df-1o 8297 df-2o 8298 df-3o 8299 |
This theorem is referenced by: clsk1indlem4 41654 clsk1indlem1 41655 |
Copyright terms: Public domain | W3C validator |