Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o2 Structured version   Visualization version   GIF version

Theorem df3o2 43269
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o2 3o = {∅, 1o, 2o}

Proof of Theorem df3o2
StepHypRef Expression
1 df-3o 8477 . 2 3o = suc 2o
2 df2o3 8483 . . . 4 2o = {∅, 1o}
32uneq1i 4137 . . 3 (2o ∪ {2o}) = ({∅, 1o} ∪ {2o})
4 df-suc 6356 . . 3 suc 2o = (2o ∪ {2o})
5 df-tp 4604 . . 3 {∅, 1o, 2o} = ({∅, 1o} ∪ {2o})
63, 4, 53eqtr4i 2767 . 2 suc 2o = {∅, 1o, 2o}
71, 6eqtri 2757 1 3o = {∅, 1o, 2o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3922  c0 4306  {csn 4599  {cpr 4601  {ctp 4603  suc csuc 6352  1oc1o 8468  2oc2o 8469  3oc3o 8470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3459  df-dif 3927  df-un 3929  df-nul 4307  df-pr 4602  df-tp 4604  df-suc 6356  df-1o 8475  df-2o 8476  df-3o 8477
This theorem is referenced by:  oenord1ex  43271  oenord1  43272  clsk1indlem4  44000  clsk1indlem1  44001
  Copyright terms: Public domain W3C validator