| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o2 | Structured version Visualization version GIF version | ||
| Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) |
| Ref | Expression |
|---|---|
| df3o2 | ⊢ 3o = {∅, 1o, 2o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3o 8387 | . 2 ⊢ 3o = suc 2o | |
| 2 | df2o3 8393 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 3 | 2 | uneq1i 4114 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, 1o} ∪ {2o}) |
| 4 | df-suc 6312 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
| 5 | df-tp 4581 | . . 3 ⊢ {∅, 1o, 2o} = ({∅, 1o} ∪ {2o}) | |
| 6 | 3, 4, 5 | 3eqtr4i 2764 | . 2 ⊢ suc 2o = {∅, 1o, 2o} |
| 7 | 1, 6 | eqtri 2754 | 1 ⊢ 3o = {∅, 1o, 2o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3900 ∅c0 4283 {csn 4576 {cpr 4578 {ctp 4580 suc csuc 6308 1oc1o 8378 2oc2o 8379 3oc3o 8380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-un 3907 df-nul 4284 df-pr 4579 df-tp 4581 df-suc 6312 df-1o 8385 df-2o 8386 df-3o 8387 |
| This theorem is referenced by: oenord1ex 43347 oenord1 43348 clsk1indlem4 44076 clsk1indlem1 44077 |
| Copyright terms: Public domain | W3C validator |