Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o2 Structured version   Visualization version   GIF version

Theorem df3o2 41634
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o2 3o = {∅, 1o, 2o}

Proof of Theorem df3o2
StepHypRef Expression
1 df-3o 8299 . 2 3o = suc 2o
2 df2o3 8305 . . . 4 2o = {∅, 1o}
32uneq1i 4093 . . 3 (2o ∪ {2o}) = ({∅, 1o} ∪ {2o})
4 df-suc 6272 . . 3 suc 2o = (2o ∪ {2o})
5 df-tp 4566 . . 3 {∅, 1o, 2o} = ({∅, 1o} ∪ {2o})
63, 4, 53eqtr4i 2776 . 2 suc 2o = {∅, 1o, 2o}
71, 6eqtri 2766 1 3o = {∅, 1o, 2o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3885  c0 4256  {csn 4561  {cpr 4563  {ctp 4565  suc csuc 6268  1oc1o 8290  2oc2o 8291  3oc3o 8292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-pr 4564  df-tp 4566  df-suc 6272  df-1o 8297  df-2o 8298  df-3o 8299
This theorem is referenced by:  clsk1indlem4  41654  clsk1indlem1  41655
  Copyright terms: Public domain W3C validator