![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o2 | Structured version Visualization version GIF version |
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) |
Ref | Expression |
---|---|
df3o2 | ⊢ 3o = {∅, 1o, 2o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 8463 | . 2 ⊢ 3o = suc 2o | |
2 | df2o3 8469 | . . . 4 ⊢ 2o = {∅, 1o} | |
3 | 2 | uneq1i 4151 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, 1o} ∪ {2o}) |
4 | df-suc 6360 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
5 | df-tp 4625 | . . 3 ⊢ {∅, 1o, 2o} = ({∅, 1o} ∪ {2o}) | |
6 | 3, 4, 5 | 3eqtr4i 2762 | . 2 ⊢ suc 2o = {∅, 1o, 2o} |
7 | 1, 6 | eqtri 2752 | 1 ⊢ 3o = {∅, 1o, 2o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∪ cun 3938 ∅c0 4314 {csn 4620 {cpr 4622 {ctp 4624 suc csuc 6356 1oc1o 8454 2oc2o 8455 3oc3o 8456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-dif 3943 df-un 3945 df-nul 4315 df-pr 4623 df-tp 4625 df-suc 6360 df-1o 8461 df-2o 8462 df-3o 8463 |
This theorem is referenced by: oenord1ex 42554 oenord1 42555 clsk1indlem4 43284 clsk1indlem1 43285 |
Copyright terms: Public domain | W3C validator |