Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o2 Structured version   Visualization version   GIF version

Theorem df3o2 42365
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o2 3o = {∅, 1o, 2o}

Proof of Theorem df3o2
StepHypRef Expression
1 df-3o 8470 . 2 3o = suc 2o
2 df2o3 8476 . . . 4 2o = {∅, 1o}
32uneq1i 4158 . . 3 (2o ∪ {2o}) = ({∅, 1o} ∪ {2o})
4 df-suc 6369 . . 3 suc 2o = (2o ∪ {2o})
5 df-tp 4632 . . 3 {∅, 1o, 2o} = ({∅, 1o} ∪ {2o})
63, 4, 53eqtr4i 2768 . 2 suc 2o = {∅, 1o, 2o}
71, 6eqtri 2758 1 3o = {∅, 1o, 2o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3945  c0 4321  {csn 4627  {cpr 4629  {ctp 4631  suc csuc 6365  1oc1o 8461  2oc2o 8462  3oc3o 8463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-dif 3950  df-un 3952  df-nul 4322  df-pr 4630  df-tp 4632  df-suc 6369  df-1o 8468  df-2o 8469  df-3o 8470
This theorem is referenced by:  oenord1ex  42367  oenord1  42368  clsk1indlem4  43097  clsk1indlem1  43098
  Copyright terms: Public domain W3C validator