Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o2 Structured version   Visualization version   GIF version

Theorem df3o2 43304
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o2 3o = {∅, 1o, 2o}

Proof of Theorem df3o2
StepHypRef Expression
1 df-3o 8487 . 2 3o = suc 2o
2 df2o3 8493 . . . 4 2o = {∅, 1o}
32uneq1i 4144 . . 3 (2o ∪ {2o}) = ({∅, 1o} ∪ {2o})
4 df-suc 6363 . . 3 suc 2o = (2o ∪ {2o})
5 df-tp 4611 . . 3 {∅, 1o, 2o} = ({∅, 1o} ∪ {2o})
63, 4, 53eqtr4i 2769 . 2 suc 2o = {∅, 1o, 2o}
71, 6eqtri 2759 1 3o = {∅, 1o, 2o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3929  c0 4313  {csn 4606  {cpr 4608  {ctp 4610  suc csuc 6359  1oc1o 8478  2oc2o 8479  3oc3o 8480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-un 3936  df-nul 4314  df-pr 4609  df-tp 4611  df-suc 6363  df-1o 8485  df-2o 8486  df-3o 8487
This theorem is referenced by:  oenord1ex  43306  oenord1  43307  clsk1indlem4  44035  clsk1indlem1  44036
  Copyright terms: Public domain W3C validator