![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o2 | Structured version Visualization version GIF version |
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) |
Ref | Expression |
---|---|
df3o2 | ⊢ 3o = {∅, 1o, 2o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 8524 | . 2 ⊢ 3o = suc 2o | |
2 | df2o3 8530 | . . . 4 ⊢ 2o = {∅, 1o} | |
3 | 2 | uneq1i 4187 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, 1o} ∪ {2o}) |
4 | df-suc 6401 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
5 | df-tp 4653 | . . 3 ⊢ {∅, 1o, 2o} = ({∅, 1o} ∪ {2o}) | |
6 | 3, 4, 5 | 3eqtr4i 2778 | . 2 ⊢ suc 2o = {∅, 1o, 2o} |
7 | 1, 6 | eqtri 2768 | 1 ⊢ 3o = {∅, 1o, 2o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 ∅c0 4352 {csn 4648 {cpr 4650 {ctp 4652 suc csuc 6397 1oc1o 8515 2oc2o 8516 3oc3o 8517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-pr 4651 df-tp 4653 df-suc 6401 df-1o 8522 df-2o 8523 df-3o 8524 |
This theorem is referenced by: oenord1ex 43277 oenord1 43278 clsk1indlem4 44006 clsk1indlem1 44007 |
Copyright terms: Public domain | W3C validator |