| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o2 | Structured version Visualization version GIF version | ||
| Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) |
| Ref | Expression |
|---|---|
| df3o2 | ⊢ 3o = {∅, 1o, 2o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3o 8477 | . 2 ⊢ 3o = suc 2o | |
| 2 | df2o3 8483 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 3 | 2 | uneq1i 4137 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, 1o} ∪ {2o}) |
| 4 | df-suc 6356 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
| 5 | df-tp 4604 | . . 3 ⊢ {∅, 1o, 2o} = ({∅, 1o} ∪ {2o}) | |
| 6 | 3, 4, 5 | 3eqtr4i 2767 | . 2 ⊢ suc 2o = {∅, 1o, 2o} |
| 7 | 1, 6 | eqtri 2757 | 1 ⊢ 3o = {∅, 1o, 2o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∪ cun 3922 ∅c0 4306 {csn 4599 {cpr 4601 {ctp 4603 suc csuc 6352 1oc1o 8468 2oc2o 8469 3oc3o 8470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-dif 3927 df-un 3929 df-nul 4307 df-pr 4602 df-tp 4604 df-suc 6356 df-1o 8475 df-2o 8476 df-3o 8477 |
| This theorem is referenced by: oenord1ex 43271 oenord1 43272 clsk1indlem4 44000 clsk1indlem1 44001 |
| Copyright terms: Public domain | W3C validator |