Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o2 Structured version   Visualization version   GIF version

Theorem df3o2 43303
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o2 3o = {∅, 1o, 2o}

Proof of Theorem df3o2
StepHypRef Expression
1 df-3o 8507 . 2 3o = suc 2o
2 df2o3 8513 . . . 4 2o = {∅, 1o}
32uneq1i 4174 . . 3 (2o ∪ {2o}) = ({∅, 1o} ∪ {2o})
4 df-suc 6392 . . 3 suc 2o = (2o ∪ {2o})
5 df-tp 4636 . . 3 {∅, 1o, 2o} = ({∅, 1o} ∪ {2o})
63, 4, 53eqtr4i 2773 . 2 suc 2o = {∅, 1o, 2o}
71, 6eqtri 2763 1 3o = {∅, 1o, 2o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3961  c0 4339  {csn 4631  {cpr 4633  {ctp 4635  suc csuc 6388  1oc1o 8498  2oc2o 8499  3oc3o 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-un 3968  df-nul 4340  df-pr 4634  df-tp 4636  df-suc 6392  df-1o 8505  df-2o 8506  df-3o 8507
This theorem is referenced by:  oenord1ex  43305  oenord1  43306  clsk1indlem4  44034  clsk1indlem1  44035
  Copyright terms: Public domain W3C validator