Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o2 | Structured version Visualization version GIF version |
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) |
Ref | Expression |
---|---|
df3o2 | ⊢ 3o = {∅, 1o, 2o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 8115 | . 2 ⊢ 3o = suc 2o | |
2 | df2o3 8128 | . . . 4 ⊢ 2o = {∅, 1o} | |
3 | 2 | uneq1i 4065 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, 1o} ∪ {2o}) |
4 | df-suc 6176 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
5 | df-tp 4528 | . . 3 ⊢ {∅, 1o, 2o} = ({∅, 1o} ∪ {2o}) | |
6 | 3, 4, 5 | 3eqtr4i 2792 | . 2 ⊢ suc 2o = {∅, 1o, 2o} |
7 | 1, 6 | eqtri 2782 | 1 ⊢ 3o = {∅, 1o, 2o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3857 ∅c0 4226 {csn 4523 {cpr 4525 {ctp 4527 suc csuc 6172 1oc1o 8106 2oc2o 8107 3oc3o 8108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-dif 3862 df-un 3864 df-nul 4227 df-pr 4526 df-tp 4528 df-suc 6176 df-1o 8113 df-2o 8114 df-3o 8115 |
This theorem is referenced by: clsk1indlem4 41113 clsk1indlem1 41114 |
Copyright terms: Public domain | W3C validator |