Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o2 Structured version   Visualization version   GIF version

Theorem df3o2 43275
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o2 3o = {∅, 1o, 2o}

Proof of Theorem df3o2
StepHypRef Expression
1 df-3o 8524 . 2 3o = suc 2o
2 df2o3 8530 . . . 4 2o = {∅, 1o}
32uneq1i 4187 . . 3 (2o ∪ {2o}) = ({∅, 1o} ∪ {2o})
4 df-suc 6401 . . 3 suc 2o = (2o ∪ {2o})
5 df-tp 4653 . . 3 {∅, 1o, 2o} = ({∅, 1o} ∪ {2o})
63, 4, 53eqtr4i 2778 . 2 suc 2o = {∅, 1o, 2o}
71, 6eqtri 2768 1 3o = {∅, 1o, 2o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3974  c0 4352  {csn 4648  {cpr 4650  {ctp 4652  suc csuc 6397  1oc1o 8515  2oc2o 8516  3oc3o 8517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-pr 4651  df-tp 4653  df-suc 6401  df-1o 8522  df-2o 8523  df-3o 8524
This theorem is referenced by:  oenord1ex  43277  oenord1  43278  clsk1indlem4  44006  clsk1indlem1  44007
  Copyright terms: Public domain W3C validator