![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df3o2 | Structured version Visualization version GIF version |
Description: Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) |
Ref | Expression |
---|---|
df3o2 | ⊢ 3o = {∅, 1o, 2o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 8470 | . 2 ⊢ 3o = suc 2o | |
2 | df2o3 8476 | . . . 4 ⊢ 2o = {∅, 1o} | |
3 | 2 | uneq1i 4158 | . . 3 ⊢ (2o ∪ {2o}) = ({∅, 1o} ∪ {2o}) |
4 | df-suc 6369 | . . 3 ⊢ suc 2o = (2o ∪ {2o}) | |
5 | df-tp 4632 | . . 3 ⊢ {∅, 1o, 2o} = ({∅, 1o} ∪ {2o}) | |
6 | 3, 4, 5 | 3eqtr4i 2768 | . 2 ⊢ suc 2o = {∅, 1o, 2o} |
7 | 1, 6 | eqtri 2758 | 1 ⊢ 3o = {∅, 1o, 2o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3945 ∅c0 4321 {csn 4627 {cpr 4629 {ctp 4631 suc csuc 6365 1oc1o 8461 2oc2o 8462 3oc3o 8463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-dif 3950 df-un 3952 df-nul 4322 df-pr 4630 df-tp 4632 df-suc 6369 df-1o 8468 df-2o 8469 df-3o 8470 |
This theorem is referenced by: oenord1ex 42367 oenord1 42368 clsk1indlem4 43097 clsk1indlem1 43098 |
Copyright terms: Public domain | W3C validator |