Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp3o Structured version   Visualization version   GIF version

Theorem finxp3o 37433
Description: The value of Cartesian exponentiation at three. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxp3o (𝑈↑↑3o) = ((𝑈 × 𝑈) × 𝑈)

Proof of Theorem finxp3o
StepHypRef Expression
1 df-3o 8387 . . 3 3o = suc 2o
2 finxpeq2 37420 . . 3 (3o = suc 2o → (𝑈↑↑3o) = (𝑈↑↑suc 2o))
31, 2ax-mp 5 . 2 (𝑈↑↑3o) = (𝑈↑↑suc 2o)
4 2onn 8557 . . 3 2o ∈ ω
5 2on0 8399 . . 3 2o ≠ ∅
6 finxpsuc 37431 . . 3 ((2o ∈ ω ∧ 2o ≠ ∅) → (𝑈↑↑suc 2o) = ((𝑈↑↑2o) × 𝑈))
74, 5, 6mp2an 692 . 2 (𝑈↑↑suc 2o) = ((𝑈↑↑2o) × 𝑈)
8 finxp2o 37432 . . 3 (𝑈↑↑2o) = (𝑈 × 𝑈)
98xpeq1i 5642 . 2 ((𝑈↑↑2o) × 𝑈) = ((𝑈 × 𝑈) × 𝑈)
103, 7, 93eqtri 2758 1 (𝑈↑↑3o) = ((𝑈 × 𝑈) × 𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wne 2928  c0 4283   × cxp 5614  suc csuc 6308  ωcom 7796  2oc2o 8379  3oc3o 8380  ↑↑cfinxp 37416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-3o 8387  df-oadd 8389  df-en 8870  df-fin 8873  df-finxp 37417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator