Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp3o Structured version   Visualization version   GIF version

Theorem finxp3o 35571
Description: The value of Cartesian exponentiation at three. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxp3o (𝑈↑↑3o) = ((𝑈 × 𝑈) × 𝑈)

Proof of Theorem finxp3o
StepHypRef Expression
1 df-3o 8299 . . 3 3o = suc 2o
2 finxpeq2 35558 . . 3 (3o = suc 2o → (𝑈↑↑3o) = (𝑈↑↑suc 2o))
31, 2ax-mp 5 . 2 (𝑈↑↑3o) = (𝑈↑↑suc 2o)
4 2onn 8472 . . 3 2o ∈ ω
5 2on0 8313 . . 3 2o ≠ ∅
6 finxpsuc 35569 . . 3 ((2o ∈ ω ∧ 2o ≠ ∅) → (𝑈↑↑suc 2o) = ((𝑈↑↑2o) × 𝑈))
74, 5, 6mp2an 689 . 2 (𝑈↑↑suc 2o) = ((𝑈↑↑2o) × 𝑈)
8 finxp2o 35570 . . 3 (𝑈↑↑2o) = (𝑈 × 𝑈)
98xpeq1i 5615 . 2 ((𝑈↑↑2o) × 𝑈) = ((𝑈 × 𝑈) × 𝑈)
103, 7, 93eqtri 2770 1 (𝑈↑↑3o) = ((𝑈 × 𝑈) × 𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wne 2943  c0 4256   × cxp 5587  suc csuc 6268  ωcom 7712  2oc2o 8291  3oc3o 8292  ↑↑cfinxp 35554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-3o 8299  df-oadd 8301  df-en 8734  df-fin 8737  df-finxp 35555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator