| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp3o | Structured version Visualization version GIF version | ||
| Description: The value of Cartesian exponentiation at three. (Contributed by ML, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| finxp3o | ⊢ (𝑈↑↑3o) = ((𝑈 × 𝑈) × 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3o 8387 | . . 3 ⊢ 3o = suc 2o | |
| 2 | finxpeq2 37420 | . . 3 ⊢ (3o = suc 2o → (𝑈↑↑3o) = (𝑈↑↑suc 2o)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝑈↑↑3o) = (𝑈↑↑suc 2o) |
| 4 | 2onn 8557 | . . 3 ⊢ 2o ∈ ω | |
| 5 | 2on0 8399 | . . 3 ⊢ 2o ≠ ∅ | |
| 6 | finxpsuc 37431 | . . 3 ⊢ ((2o ∈ ω ∧ 2o ≠ ∅) → (𝑈↑↑suc 2o) = ((𝑈↑↑2o) × 𝑈)) | |
| 7 | 4, 5, 6 | mp2an 692 | . 2 ⊢ (𝑈↑↑suc 2o) = ((𝑈↑↑2o) × 𝑈) |
| 8 | finxp2o 37432 | . . 3 ⊢ (𝑈↑↑2o) = (𝑈 × 𝑈) | |
| 9 | 8 | xpeq1i 5642 | . 2 ⊢ ((𝑈↑↑2o) × 𝑈) = ((𝑈 × 𝑈) × 𝑈) |
| 10 | 3, 7, 9 | 3eqtri 2758 | 1 ⊢ (𝑈↑↑3o) = ((𝑈 × 𝑈) × 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 × cxp 5614 suc csuc 6308 ωcom 7796 2oc2o 8379 3oc3o 8380 ↑↑cfinxp 37416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-3o 8387 df-oadd 8389 df-en 8870 df-fin 8873 df-finxp 37417 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |