Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version |
Description: Define the ordinal number 2. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
df-2o | ⊢ 2o = suc 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c2o 8278 | . 2 class 2o | |
2 | c1o 8277 | . . 3 class 1o | |
3 | 2 | csuc 6261 | . 2 class suc 1o |
4 | 1, 3 | wceq 1539 | 1 wff 2o = suc 1o |
Colors of variables: wff setvar class |
This definition is referenced by: df2o3 8292 2on 8298 2onOLD 8299 2on0 8300 2oexOLD 8304 ondif2 8319 o1p1e2 8357 o2p2e4 8358 o2p2e4OLD 8359 oneo 8399 2onnALT 8460 1one2o 8463 nnm2 8470 nnneo 8472 nneob 8473 enpr2d 8825 snnen2oOLD 8997 1sdom2 9008 1sdom 9012 en2 9040 pm54.43 9769 en2eleq 9774 en2other2 9775 infxpenc 9784 infxpenc2 9788 dju1p1e2ALT 9940 fin1a2lem4 10169 cfpwsdom 10350 canthp1lem2 10419 pwxpndom2 10431 tsk2 10531 hash2 14130 f1otrspeq 19065 pmtrf 19073 pmtrmvd 19074 pmtrfinv 19079 efgmnvl 19330 isnzr2 20544 unidifsnel 30891 unidifsnne 30892 ex-sategoelel12 33397 sltval2 33867 nosgnn0 33869 sltsolem1 33886 nosepnelem 33890 nolt02o 33906 nogt01o 33907 1oequni2o 35547 finxpreclem3 35572 finxpreclem4 35573 finxpsuclem 35576 finxp2o 35578 pw2f1ocnv 40867 pwfi2f1o 40929 clsk1indlem1 41636 |
Copyright terms: Public domain | W3C validator |