![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version |
Description: Define the ordinal number 2. Lemma 3.17 of [Schloeder] p. 10. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
df-2o | ⊢ 2o = suc 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c2o 8498 | . 2 class 2o | |
2 | c1o 8497 | . . 3 class 1o | |
3 | 2 | csuc 6387 | . 2 class suc 1o |
4 | 1, 3 | wceq 1536 | 1 wff 2o = suc 1o |
Colors of variables: wff setvar class |
This definition is referenced by: df2o3 8512 2on 8518 2onOLD 8519 2on0 8520 ondif2 8538 o1p1e2 8576 o2p2e4 8577 oneo 8617 2onnALT 8679 1one2o 8682 nnm2 8689 nnneo 8691 nneob 8692 enpr2dOLD 9088 snnen2oOLD 9261 1sdom2ALT 9274 1sdomOLD 9282 en2 9312 pm54.43 10038 en2eleq 10045 en2other2 10046 infxpenc 10055 infxpenc2 10059 dju1p1e2ALT 10212 fin1a2lem4 10440 cfpwsdom 10621 canthp1lem2 10690 pwxpndom2 10702 tsk2 10802 hash2 14440 f1otrspeq 19479 pmtrf 19487 pmtrmvd 19488 pmtrfinv 19493 efgmnvl 19746 isnzr2 20534 sltval2 27715 nosgnn0 27717 sltsolem1 27734 nosepnelem 27738 nolt02o 27754 nogt01o 27755 unidifsnel 32560 unidifsnne 32561 ex-sategoelel12 35411 1oequni2o 37350 finxpreclem3 37375 finxpreclem4 37376 finxpsuclem 37379 finxp2o 37381 pw2f1ocnv 43025 pwfi2f1o 43084 oege2 43296 oaomoencom 43306 om2 43393 oaltom 43394 oe2 43395 omltoe 43396 nlim2NEW 43432 clsk1indlem1 44034 |
Copyright terms: Public domain | W3C validator |