| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 2. Lemma 3.17 of [Schloeder] p. 10. (Contributed by NM, 18-Feb-2004.) |
| Ref | Expression |
|---|---|
| df-2o | ⊢ 2o = suc 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c2o 8405 | . 2 class 2o | |
| 2 | c1o 8404 | . . 3 class 1o | |
| 3 | 2 | csuc 6322 | . 2 class suc 1o |
| 4 | 1, 3 | wceq 1540 | 1 wff 2o = suc 1o |
| Colors of variables: wff setvar class |
| This definition is referenced by: df2o3 8419 2on 8424 2on0 8425 ondif2 8443 o1p1e2 8481 o2p2e4 8482 oneo 8522 2onnALT 8584 1one2o 8587 nnm2 8594 nnneo 8596 nneob 8597 enpr2dOLD 8998 1sdom2ALT 9165 1sdomOLD 9172 en2 9202 pm54.43 9930 en2eleq 9937 en2other2 9938 infxpenc 9947 infxpenc2 9951 dju1p1e2ALT 10104 fin1a2lem4 10332 cfpwsdom 10513 canthp1lem2 10582 pwxpndom2 10594 tsk2 10694 hash2 14346 f1otrspeq 19353 pmtrf 19361 pmtrmvd 19362 pmtrfinv 19367 efgmnvl 19620 isnzr2 20403 sltval2 27544 nosgnn0 27546 sltsolem1 27563 nosepnelem 27567 nolt02o 27583 nogt01o 27584 unidifsnel 32437 unidifsnne 32438 ex-sategoelel12 35387 1oequni2o 37329 finxpreclem3 37354 finxpreclem4 37355 finxpsuclem 37358 finxp2o 37360 pw2f1ocnv 42999 pwfi2f1o 43058 oege2 43269 oaomoencom 43279 om2 43366 oaltom 43367 oe2 43368 omltoe 43369 nlim2NEW 43405 clsk1indlem1 44007 |
| Copyright terms: Public domain | W3C validator |