Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version |
Description: Define the ordinal number 2. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
df-2o | ⊢ 2o = suc 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c2o 8261 | . 2 class 2o | |
2 | c1o 8260 | . . 3 class 1o | |
3 | 2 | csuc 6253 | . 2 class suc 1o |
4 | 1, 3 | wceq 1539 | 1 wff 2o = suc 1o |
Colors of variables: wff setvar class |
This definition is referenced by: 2on 8275 2on0 8276 df2o3 8282 2oexOLD 8285 ondif2 8294 o1p1e2 8332 o2p2e4 8333 o2p2e4OLD 8334 oneo 8374 2onn 8433 1one2o 8436 nnm2 8443 nnneo 8445 nneob 8446 enpr2d 8792 snnen2o 8903 1sdom2 8951 1sdom 8955 en2 8983 pm54.43 9690 en2eleq 9695 en2other2 9696 infxpenc 9705 infxpenc2 9709 dju1p1e2ALT 9861 fin1a2lem4 10090 cfpwsdom 10271 canthp1lem2 10340 pwxpndom2 10352 tsk2 10452 hash2 14048 f1otrspeq 18970 pmtrf 18978 pmtrmvd 18979 pmtrfinv 18984 efgmnvl 19235 isnzr2 20447 unidifsnel 30784 unidifsnne 30785 ex-sategoelel12 33289 sltval2 33786 nosgnn0 33788 sltsolem1 33805 nosepnelem 33809 nolt02o 33825 nogt01o 33826 1oequni2o 35466 finxpreclem3 35491 finxpreclem4 35492 finxpsuclem 35495 finxp2o 35497 pw2f1ocnv 40775 pwfi2f1o 40837 clsk1indlem1 41544 |
Copyright terms: Public domain | W3C validator |