| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 2. Lemma 3.17 of [Schloeder] p. 10. (Contributed by NM, 18-Feb-2004.) |
| Ref | Expression |
|---|---|
| df-2o | ⊢ 2o = suc 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c2o 8428 | . 2 class 2o | |
| 2 | c1o 8427 | . . 3 class 1o | |
| 3 | 2 | csuc 6334 | . 2 class suc 1o |
| 4 | 1, 3 | wceq 1540 | 1 wff 2o = suc 1o |
| Colors of variables: wff setvar class |
| This definition is referenced by: df2o3 8442 2on 8447 2on0 8448 ondif2 8466 o1p1e2 8504 o2p2e4 8505 oneo 8545 2onnALT 8607 1one2o 8610 nnm2 8617 nnneo 8619 nneob 8620 enpr2dOLD 9021 1sdom2ALT 9188 1sdomOLD 9196 en2 9226 pm54.43 9954 en2eleq 9961 en2other2 9962 infxpenc 9971 infxpenc2 9975 dju1p1e2ALT 10128 fin1a2lem4 10356 cfpwsdom 10537 canthp1lem2 10606 pwxpndom2 10618 tsk2 10718 hash2 14370 f1otrspeq 19377 pmtrf 19385 pmtrmvd 19386 pmtrfinv 19391 efgmnvl 19644 isnzr2 20427 sltval2 27568 nosgnn0 27570 sltsolem1 27587 nosepnelem 27591 nolt02o 27607 nogt01o 27608 unidifsnel 32464 unidifsnne 32465 ex-sategoelel12 35414 1oequni2o 37356 finxpreclem3 37381 finxpreclem4 37382 finxpsuclem 37385 finxp2o 37387 pw2f1ocnv 43026 pwfi2f1o 43085 oege2 43296 oaomoencom 43306 om2 43393 oaltom 43394 oe2 43395 omltoe 43396 nlim2NEW 43432 clsk1indlem1 44034 |
| Copyright terms: Public domain | W3C validator |