| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 2. Lemma 3.17 of [Schloeder] p. 10. (Contributed by NM, 18-Feb-2004.) |
| Ref | Expression |
|---|---|
| df-2o | ⊢ 2o = suc 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c2o 8382 | . 2 class 2o | |
| 2 | c1o 8381 | . . 3 class 1o | |
| 3 | 2 | csuc 6309 | . 2 class suc 1o |
| 4 | 1, 3 | wceq 1540 | 1 wff 2o = suc 1o |
| Colors of variables: wff setvar class |
| This definition is referenced by: df2o3 8396 2on 8401 2on0 8402 ondif2 8420 o1p1e2 8458 o2p2e4 8459 oneo 8499 2onnALT 8561 1one2o 8564 nnm2 8571 nnneo 8573 nneob 8574 1sdom2ALT 9138 en2 9169 pm54.43 9897 en2eleq 9902 en2other2 9903 infxpenc 9912 infxpenc2 9916 dju1p1e2ALT 10069 fin1a2lem4 10297 cfpwsdom 10478 canthp1lem2 10547 pwxpndom2 10559 tsk2 10659 hash2 14312 f1otrspeq 19326 pmtrf 19334 pmtrmvd 19335 pmtrfinv 19340 efgmnvl 19593 isnzr2 20403 sltval2 27566 nosgnn0 27568 sltsolem1 27585 nosepnelem 27589 nolt02o 27605 nogt01o 27606 unidifsnel 32479 unidifsnne 32480 ex-sategoelel12 35410 1oequni2o 37352 finxpreclem3 37377 finxpreclem4 37378 finxpsuclem 37381 finxp2o 37383 pw2f1ocnv 43020 pwfi2f1o 43079 oege2 43290 oaomoencom 43300 om2 43387 oaltom 43388 oe2 43389 omltoe 43390 nlim2NEW 43426 clsk1indlem1 44028 |
| Copyright terms: Public domain | W3C validator |