| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 2. Lemma 3.17 of [Schloeder] p. 10. (Contributed by NM, 18-Feb-2004.) |
| Ref | Expression |
|---|---|
| df-2o | ⊢ 2o = suc 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c2o 8468 | . 2 class 2o | |
| 2 | c1o 8467 | . . 3 class 1o | |
| 3 | 2 | csuc 6351 | . 2 class suc 1o |
| 4 | 1, 3 | wceq 1539 | 1 wff 2o = suc 1o |
| Colors of variables: wff setvar class |
| This definition is referenced by: df2o3 8482 2on 8488 2onOLD 8489 2on0 8490 ondif2 8508 o1p1e2 8546 o2p2e4 8547 oneo 8587 2onnALT 8649 1one2o 8652 nnm2 8659 nnneo 8661 nneob 8662 enpr2dOLD 9058 snnen2oOLD 9230 1sdom2ALT 9243 1sdomOLD 9251 en2 9281 pm54.43 10007 en2eleq 10014 en2other2 10015 infxpenc 10024 infxpenc2 10028 dju1p1e2ALT 10181 fin1a2lem4 10409 cfpwsdom 10590 canthp1lem2 10659 pwxpndom2 10671 tsk2 10771 hash2 14411 f1otrspeq 19413 pmtrf 19421 pmtrmvd 19422 pmtrfinv 19427 efgmnvl 19680 isnzr2 20463 sltval2 27604 nosgnn0 27606 sltsolem1 27623 nosepnelem 27627 nolt02o 27643 nogt01o 27644 unidifsnel 32449 unidifsnne 32450 ex-sategoelel12 35370 1oequni2o 37307 finxpreclem3 37332 finxpreclem4 37333 finxpsuclem 37336 finxp2o 37338 pw2f1ocnv 42986 pwfi2f1o 43045 oege2 43256 oaomoencom 43266 om2 43353 oaltom 43354 oe2 43355 omltoe 43356 nlim2NEW 43392 clsk1indlem1 43994 |
| Copyright terms: Public domain | W3C validator |