| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 2. Lemma 3.17 of [Schloeder] p. 10. (Contributed by NM, 18-Feb-2004.) |
| Ref | Expression |
|---|---|
| df-2o | ⊢ 2o = suc 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c2o 8431 | . 2 class 2o | |
| 2 | c1o 8430 | . . 3 class 1o | |
| 3 | 2 | csuc 6337 | . 2 class suc 1o |
| 4 | 1, 3 | wceq 1540 | 1 wff 2o = suc 1o |
| Colors of variables: wff setvar class |
| This definition is referenced by: df2o3 8445 2on 8450 2on0 8451 ondif2 8469 o1p1e2 8507 o2p2e4 8508 oneo 8548 2onnALT 8610 1one2o 8613 nnm2 8620 nnneo 8622 nneob 8623 enpr2dOLD 9024 1sdom2ALT 9195 1sdomOLD 9203 en2 9233 pm54.43 9961 en2eleq 9968 en2other2 9969 infxpenc 9978 infxpenc2 9982 dju1p1e2ALT 10135 fin1a2lem4 10363 cfpwsdom 10544 canthp1lem2 10613 pwxpndom2 10625 tsk2 10725 hash2 14377 f1otrspeq 19384 pmtrf 19392 pmtrmvd 19393 pmtrfinv 19398 efgmnvl 19651 isnzr2 20434 sltval2 27575 nosgnn0 27577 sltsolem1 27594 nosepnelem 27598 nolt02o 27614 nogt01o 27615 unidifsnel 32471 unidifsnne 32472 ex-sategoelel12 35421 1oequni2o 37363 finxpreclem3 37388 finxpreclem4 37389 finxpsuclem 37392 finxp2o 37394 pw2f1ocnv 43033 pwfi2f1o 43092 oege2 43303 oaomoencom 43313 om2 43400 oaltom 43401 oe2 43402 omltoe 43403 nlim2NEW 43439 clsk1indlem1 44041 |
| Copyright terms: Public domain | W3C validator |