| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 2. Lemma 3.17 of [Schloeder] p. 10. (Contributed by NM, 18-Feb-2004.) |
| Ref | Expression |
|---|---|
| df-2o | ⊢ 2o = suc 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c2o 8379 | . 2 class 2o | |
| 2 | c1o 8378 | . . 3 class 1o | |
| 3 | 2 | csuc 6308 | . 2 class suc 1o |
| 4 | 1, 3 | wceq 1541 | 1 wff 2o = suc 1o |
| Colors of variables: wff setvar class |
| This definition is referenced by: df2o3 8393 2on 8398 2on0 8399 ondif2 8417 o1p1e2 8455 o2p2e4 8456 oneo 8496 2onnALT 8558 1one2o 8561 nnm2 8568 nnneo 8570 nneob 8571 1sdom2ALT 9133 en2 9164 pm54.43 9894 en2eleq 9899 en2other2 9900 infxpenc 9909 infxpenc2 9913 dju1p1e2ALT 10066 fin1a2lem4 10294 cfpwsdom 10475 canthp1lem2 10544 pwxpndom2 10556 tsk2 10656 hash2 14312 f1otrspeq 19359 pmtrf 19367 pmtrmvd 19368 pmtrfinv 19373 efgmnvl 19626 isnzr2 20433 sltval2 27595 nosgnn0 27597 sltsolem1 27614 nosepnelem 27618 nolt02o 27634 nogt01o 27635 unidifsnel 32515 unidifsnne 32516 r12 35106 ex-sategoelel12 35471 1oequni2o 37412 finxpreclem3 37437 finxpreclem4 37438 finxpsuclem 37441 finxp2o 37443 pw2f1ocnv 43140 pwfi2f1o 43199 oege2 43410 oaomoencom 43420 om2 43507 oaltom 43508 oe2 43509 omltoe 43510 nlim2NEW 43546 clsk1indlem1 44148 |
| Copyright terms: Public domain | W3C validator |