![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version |
Description: Define the ordinal number 2. Lemma 3.17 of [Schloeder] p. 10. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
df-2o | ⊢ 2o = suc 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c2o 8460 | . 2 class 2o | |
2 | c1o 8459 | . . 3 class 1o | |
3 | 2 | csuc 6367 | . 2 class suc 1o |
4 | 1, 3 | wceq 1542 | 1 wff 2o = suc 1o |
Colors of variables: wff setvar class |
This definition is referenced by: df2o3 8474 2on 8480 2onOLD 8481 2on0 8482 2oexOLD 8487 ondif2 8502 o1p1e2 8540 o2p2e4 8541 oneo 8581 2onnALT 8642 1one2o 8645 nnm2 8652 nnneo 8654 nneob 8655 enpr2dOLD 9050 snnen2oOLD 9227 1sdom2ALT 9241 1sdomOLD 9249 en2 9281 pm54.43 9996 en2eleq 10003 en2other2 10004 infxpenc 10013 infxpenc2 10017 dju1p1e2ALT 10169 fin1a2lem4 10398 cfpwsdom 10579 canthp1lem2 10648 pwxpndom2 10660 tsk2 10760 hash2 14365 f1otrspeq 19315 pmtrf 19323 pmtrmvd 19324 pmtrfinv 19329 efgmnvl 19582 isnzr2 20297 sltval2 27159 nosgnn0 27161 sltsolem1 27178 nosepnelem 27182 nolt02o 27198 nogt01o 27199 unidifsnel 31772 unidifsnne 31773 ex-sategoelel12 34418 1oequni2o 36249 finxpreclem3 36274 finxpreclem4 36275 finxpsuclem 36278 finxp2o 36280 pw2f1ocnv 41776 pwfi2f1o 41838 oege2 42057 oaomoencom 42067 om2 42155 oaltom 42156 oe2 42157 omltoe 42158 nlim2NEW 42194 clsk1indlem1 42796 |
Copyright terms: Public domain | W3C validator |