Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version |
Description: Define the ordinal number 2. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
df-2o | ⊢ 2o = suc 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c2o 8300 | . 2 class 2o | |
2 | c1o 8299 | . . 3 class 1o | |
3 | 2 | csuc 6272 | . 2 class suc 1o |
4 | 1, 3 | wceq 1539 | 1 wff 2o = suc 1o |
Colors of variables: wff setvar class |
This definition is referenced by: df2o3 8314 2on 8320 2onOLD 8321 2on0 8322 2oexOLD 8326 ondif2 8341 o1p1e2 8379 o2p2e4 8380 o2p2e4OLD 8381 oneo 8421 2onnALT 8482 1one2o 8485 nnm2 8492 nnneo 8494 nneob 8495 enpr2d 8847 snnen2oOLD 9019 1sdom2 9030 1sdom 9034 en2 9062 pm54.43 9768 en2eleq 9773 en2other2 9774 infxpenc 9783 infxpenc2 9787 dju1p1e2ALT 9939 fin1a2lem4 10168 cfpwsdom 10349 canthp1lem2 10418 pwxpndom2 10430 tsk2 10530 hash2 14129 f1otrspeq 19064 pmtrf 19072 pmtrmvd 19073 pmtrfinv 19078 efgmnvl 19329 isnzr2 20543 unidifsnel 30892 unidifsnne 30893 ex-sategoelel12 33398 sltval2 33868 nosgnn0 33870 sltsolem1 33887 nosepnelem 33891 nolt02o 33907 nogt01o 33908 1oequni2o 35548 finxpreclem3 35573 finxpreclem4 35574 finxpsuclem 35577 finxp2o 35579 pw2f1ocnv 40866 pwfi2f1o 40928 nlim2NEW 41057 clsk1indlem1 41662 |
Copyright terms: Public domain | W3C validator |