![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-2o | Structured version Visualization version GIF version |
Description: Define the ordinal number 2. Lemma 3.17 of [Schloeder] p. 10. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
df-2o | ⊢ 2o = suc 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c2o 8516 | . 2 class 2o | |
2 | c1o 8515 | . . 3 class 1o | |
3 | 2 | csuc 6397 | . 2 class suc 1o |
4 | 1, 3 | wceq 1537 | 1 wff 2o = suc 1o |
Colors of variables: wff setvar class |
This definition is referenced by: df2o3 8530 2on 8536 2onOLD 8537 2on0 8538 2oexOLD 8543 ondif2 8558 o1p1e2 8596 o2p2e4 8597 oneo 8637 2onnALT 8699 1one2o 8702 nnm2 8709 nnneo 8711 nneob 8712 enpr2dOLD 9116 snnen2oOLD 9290 1sdom2ALT 9304 1sdomOLD 9312 en2 9343 pm54.43 10070 en2eleq 10077 en2other2 10078 infxpenc 10087 infxpenc2 10091 dju1p1e2ALT 10244 fin1a2lem4 10472 cfpwsdom 10653 canthp1lem2 10722 pwxpndom2 10734 tsk2 10834 hash2 14454 f1otrspeq 19489 pmtrf 19497 pmtrmvd 19498 pmtrfinv 19503 efgmnvl 19756 isnzr2 20544 sltval2 27719 nosgnn0 27721 sltsolem1 27738 nosepnelem 27742 nolt02o 27758 nogt01o 27759 unidifsnel 32563 unidifsnne 32564 ex-sategoelel12 35395 1oequni2o 37334 finxpreclem3 37359 finxpreclem4 37360 finxpsuclem 37363 finxp2o 37365 pw2f1ocnv 42994 pwfi2f1o 43053 oege2 43269 oaomoencom 43279 om2 43366 oaltom 43367 oe2 43368 omltoe 43369 nlim2NEW 43405 clsk1indlem1 44007 |
Copyright terms: Public domain | W3C validator |