Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlim3 Structured version   Visualization version   GIF version

Theorem nlim3 43601
Description: 3 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlim3 ¬ Lim 3o

Proof of Theorem nlim3
StepHypRef Expression
1 2on 8407 . 2 2o ∈ On
2 nlimsuc 43598 . . 3 (2o ∈ On → ¬ Lim suc 2o)
3 df-3o 8396 . . . 4 3o = suc 2o
4 limeq 6326 . . . 4 (3o = suc 2o → (Lim 3o ↔ Lim suc 2o))
53, 4ax-mp 5 . . 3 (Lim 3o ↔ Lim suc 2o)
62, 5sylnibr 329 . 2 (2o ∈ On → ¬ Lim 3o)
71, 6ax-mp 5 1 ¬ Lim 3o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2113  Oncon0 6314  Lim wlim 6315  suc csuc 6316  2oc2o 8388  3oc3o 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-1o 8394  df-2o 8395  df-3o 8396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator