| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nlim3 | Structured version Visualization version GIF version | ||
| Description: 3 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
| Ref | Expression |
|---|---|
| nlim3 | ⊢ ¬ Lim 3o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8457 | . 2 ⊢ 2o ∈ On | |
| 2 | nlimsuc 43402 | . . 3 ⊢ (2o ∈ On → ¬ Lim suc 2o) | |
| 3 | df-3o 8445 | . . . 4 ⊢ 3o = suc 2o | |
| 4 | limeq 6352 | . . . 4 ⊢ (3o = suc 2o → (Lim 3o ↔ Lim suc 2o)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (Lim 3o ↔ Lim suc 2o) |
| 6 | 2, 5 | sylnibr 329 | . 2 ⊢ (2o ∈ On → ¬ Lim 3o) |
| 7 | 1, 6 | ax-mp 5 | 1 ⊢ ¬ Lim 3o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Oncon0 6340 Lim wlim 6341 suc csuc 6342 2oc2o 8437 3oc3o 8438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-tr 5223 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-1o 8443 df-2o 8444 df-3o 8445 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |