![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en3 | Structured version Visualization version GIF version |
Description: A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
en3 | ⊢ (𝐴 ≈ 3o → ∃𝑥∃𝑦∃𝑧 𝐴 = {𝑥, 𝑦, 𝑧}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 8065 | . 2 ⊢ 2o ∈ ω | |
2 | df-3o 7905 | . 2 ⊢ 3o = suc 2o | |
3 | en2 8547 | . 2 ⊢ ((𝐴 ∖ {𝑥}) ≈ 2o → ∃𝑦∃𝑧(𝐴 ∖ {𝑥}) = {𝑦, 𝑧}) | |
4 | tpass 4558 | . . . 4 ⊢ {𝑥, 𝑦, 𝑧} = ({𝑥} ∪ {𝑦, 𝑧}) | |
5 | 4 | enp1ilem 8545 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦, 𝑧} → 𝐴 = {𝑥, 𝑦, 𝑧})) |
6 | 5 | 2eximdv 1879 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦∃𝑧(𝐴 ∖ {𝑥}) = {𝑦, 𝑧} → ∃𝑦∃𝑧 𝐴 = {𝑥, 𝑦, 𝑧})) |
7 | 1, 2, 3, 6 | enp1i 8546 | 1 ⊢ (𝐴 ≈ 3o → ∃𝑥∃𝑦∃𝑧 𝐴 = {𝑥, 𝑦, 𝑧}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∃wex 1743 ∈ wcel 2051 ∖ cdif 3819 {csn 4435 {cpr 4437 {ctp 4439 class class class wbr 4925 2oc2o 7897 3oc3o 7898 ≈ cen 8301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-om 7395 df-1o 7903 df-2o 7904 df-3o 7905 df-er 8087 df-en 8305 df-fin 8308 |
This theorem is referenced by: en4 8549 hash3tr 13657 |
Copyright terms: Public domain | W3C validator |