MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3 Structured version   Visualization version   GIF version

Theorem en3 9165
Description: A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en3 (𝐴 ≈ 3o → ∃𝑥𝑦𝑧 𝐴 = {𝑥, 𝑦, 𝑧})
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem en3
StepHypRef Expression
1 2on 8398 . . 3 2o ∈ On
21onordi 6419 . 2 Ord 2o
3 df-3o 8387 . 2 3o = suc 2o
4 en2 9164 . 2 ((𝐴 ∖ {𝑥}) ≈ 2o → ∃𝑦𝑧(𝐴 ∖ {𝑥}) = {𝑦, 𝑧})
5 tpass 4705 . . . 4 {𝑥, 𝑦, 𝑧} = ({𝑥} ∪ {𝑦, 𝑧})
65enp1ilem 9162 . . 3 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦, 𝑧} → 𝐴 = {𝑥, 𝑦, 𝑧}))
762eximdv 1920 . 2 (𝑥𝐴 → (∃𝑦𝑧(𝐴 ∖ {𝑥}) = {𝑦, 𝑧} → ∃𝑦𝑧 𝐴 = {𝑥, 𝑦, 𝑧}))
82, 3, 4, 7enp1i 9163 1 (𝐴 ≈ 3o → ∃𝑥𝑦𝑧 𝐴 = {𝑥, 𝑦, 𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2111  cdif 3899  {csn 4576  {cpr 4578  {ctp 4580   class class class wbr 5091  2oc2o 8379  3oc3o 8380  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1o 8385  df-2o 8386  df-3o 8387  df-en 8870
This theorem is referenced by:  en4  9166  hash3tr  14398
  Copyright terms: Public domain W3C validator