| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en3 | Structured version Visualization version GIF version | ||
| Description: A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| en3 | ⊢ (𝐴 ≈ 3o → ∃𝑥∃𝑦∃𝑧 𝐴 = {𝑥, 𝑦, 𝑧}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8447 | . . 3 ⊢ 2o ∈ On | |
| 2 | 1 | onordi 6445 | . 2 ⊢ Ord 2o |
| 3 | df-3o 8436 | . 2 ⊢ 3o = suc 2o | |
| 4 | en2 9226 | . 2 ⊢ ((𝐴 ∖ {𝑥}) ≈ 2o → ∃𝑦∃𝑧(𝐴 ∖ {𝑥}) = {𝑦, 𝑧}) | |
| 5 | tpass 4716 | . . . 4 ⊢ {𝑥, 𝑦, 𝑧} = ({𝑥} ∪ {𝑦, 𝑧}) | |
| 6 | 5 | enp1ilem 9223 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦, 𝑧} → 𝐴 = {𝑥, 𝑦, 𝑧})) |
| 7 | 6 | 2eximdv 1919 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦∃𝑧(𝐴 ∖ {𝑥}) = {𝑦, 𝑧} → ∃𝑦∃𝑧 𝐴 = {𝑥, 𝑦, 𝑧})) |
| 8 | 2, 3, 4, 7 | enp1i 9224 | 1 ⊢ (𝐴 ≈ 3o → ∃𝑥∃𝑦∃𝑧 𝐴 = {𝑥, 𝑦, 𝑧}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∖ cdif 3911 {csn 4589 {cpr 4591 {ctp 4593 class class class wbr 5107 2oc2o 8428 3oc3o 8429 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-1o 8434 df-2o 8435 df-3o 8436 df-en 8919 |
| This theorem is referenced by: en4 9228 hash3tr 14456 |
| Copyright terms: Public domain | W3C validator |