| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord3 | Structured version Visualization version GIF version | ||
| Description: Ordinal 3 is an ordinal class. (Contributed by BTernaryTau, 6-Jan-2025.) |
| Ref | Expression |
|---|---|
| ord3 | ⊢ Ord 3o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8499 | . . 3 ⊢ 2o ∈ On | |
| 2 | eloni 6367 | . . 3 ⊢ (2o ∈ On → Ord 2o) | |
| 3 | ordsuci 7807 | . . 3 ⊢ (Ord 2o → Ord suc 2o) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ Ord suc 2o |
| 5 | df-3o 8487 | . . 3 ⊢ 3o = suc 2o | |
| 6 | ordeq 6364 | . . 3 ⊢ (3o = suc 2o → (Ord 3o ↔ Ord suc 2o)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (Ord 3o ↔ Ord suc 2o) |
| 8 | 4, 7 | mpbir 231 | 1 ⊢ Ord 3o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Ord word 6356 Oncon0 6357 suc csuc 6359 2oc2o 8479 3oc3o 8480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 df-1o 8485 df-2o 8486 df-3o 8487 |
| This theorem is referenced by: en4 9294 |
| Copyright terms: Public domain | W3C validator |