![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ord3 | Structured version Visualization version GIF version |
Description: Ordinal 3 is an ordinal class. (Contributed by BTernaryTau, 6-Jan-2025.) |
Ref | Expression |
---|---|
ord3 | ⊢ Ord 3o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8536 | . . 3 ⊢ 2o ∈ On | |
2 | eloni 6405 | . . 3 ⊢ (2o ∈ On → Ord 2o) | |
3 | ordsuci 7844 | . . 3 ⊢ (Ord 2o → Ord suc 2o) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ Ord suc 2o |
5 | df-3o 8524 | . . 3 ⊢ 3o = suc 2o | |
6 | ordeq 6402 | . . 3 ⊢ (3o = suc 2o → (Ord 3o ↔ Ord suc 2o)) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (Ord 3o ↔ Ord suc 2o) |
8 | 4, 7 | mpbir 231 | 1 ⊢ Ord 3o |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 Ord word 6394 Oncon0 6395 suc csuc 6397 2oc2o 8516 3oc3o 8517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 df-1o 8522 df-2o 8523 df-3o 8524 |
This theorem is referenced by: en4 9345 |
Copyright terms: Public domain | W3C validator |