| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord3 | Structured version Visualization version GIF version | ||
| Description: Ordinal 3 is an ordinal class. (Contributed by BTernaryTau, 6-Jan-2025.) |
| Ref | Expression |
|---|---|
| ord3 | ⊢ Ord 3o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on 8447 | . . 3 ⊢ 2o ∈ On | |
| 2 | eloni 6342 | . . 3 ⊢ (2o ∈ On → Ord 2o) | |
| 3 | ordsuci 7784 | . . 3 ⊢ (Ord 2o → Ord suc 2o) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ Ord suc 2o |
| 5 | df-3o 8436 | . . 3 ⊢ 3o = suc 2o | |
| 6 | ordeq 6339 | . . 3 ⊢ (3o = suc 2o → (Ord 3o ↔ Ord suc 2o)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (Ord 3o ↔ Ord suc 2o) |
| 8 | 4, 7 | mpbir 231 | 1 ⊢ Ord 3o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Ord word 6331 Oncon0 6332 suc csuc 6334 2oc2o 8428 3oc3o 8429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-suc 6338 df-1o 8434 df-2o 8435 df-3o 8436 |
| This theorem is referenced by: en4 9228 |
| Copyright terms: Public domain | W3C validator |