MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcn Structured version   Visualization version   GIF version

Theorem opelcn 11130
Description: Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
opelcn (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ (𝐴R𝐵R))

Proof of Theorem opelcn
StepHypRef Expression
1 df-c 11122 . . 3 ℂ = (R × R)
21eleq2i 2824 . 2 (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ ⟨𝐴, 𝐵⟩ ∈ (R × R))
3 opelxp 5712 . 2 (⟨𝐴, 𝐵⟩ ∈ (R × R) ↔ (𝐴R𝐵R))
42, 3bitri 275 1 (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ (𝐴R𝐵R))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2105  cop 4634   × cxp 5674  Rcnr 10866  cc 11114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-opab 5211  df-xp 5682  df-c 11122
This theorem is referenced by:  axicn  11151
  Copyright terms: Public domain W3C validator