| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelcn | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| opelcn | ⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 11004 | . . 3 ⊢ ℂ = (R × R) | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ 〈𝐴, 𝐵〉 ∈ (R × R)) |
| 3 | opelxp 5650 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (R × R) ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2110 〈cop 4580 × cxp 5612 Rcnr 10748 ℂcc 10996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-opab 5152 df-xp 5620 df-c 11004 |
| This theorem is referenced by: axicn 11033 |
| Copyright terms: Public domain | W3C validator |