MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcn Structured version   Visualization version   GIF version

Theorem opelcn 10816
Description: Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
opelcn (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ (𝐴R𝐵R))

Proof of Theorem opelcn
StepHypRef Expression
1 df-c 10808 . . 3 ℂ = (R × R)
21eleq2i 2830 . 2 (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ ⟨𝐴, 𝐵⟩ ∈ (R × R))
3 opelxp 5616 . 2 (⟨𝐴, 𝐵⟩ ∈ (R × R) ↔ (𝐴R𝐵R))
42, 3bitri 274 1 (⟨𝐴, 𝐵⟩ ∈ ℂ ↔ (𝐴R𝐵R))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  cop 4564   × cxp 5578  Rcnr 10552  cc 10800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586  df-c 10808
This theorem is referenced by:  axicn  10837
  Copyright terms: Public domain W3C validator