MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulf Structured version   Visualization version   GIF version

Theorem axmulf 10568
Description: Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl 10575. This construction-dependent theorem should not be referenced directly; instead, use ax-mulf 10617. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
axmulf · :(ℂ × ℂ)⟶ℂ

Proof of Theorem axmulf
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moeq 3698 . . . . . . . . 9 ∃*𝑧 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩
21mosubop 5401 . . . . . . . 8 ∃*𝑧𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)
32mosubop 5401 . . . . . . 7 ∃*𝑧𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))
4 anass 471 . . . . . . . . . . 11 (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)))
542exbii 1849 . . . . . . . . . 10 (∃𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩) ↔ ∃𝑢𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)))
6 19.42vv 1958 . . . . . . . . . 10 (∃𝑢𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)))
75, 6bitri 277 . . . . . . . . 9 (∃𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)))
872exbii 1849 . . . . . . . 8 (∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩) ↔ ∃𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)))
98mobii 2631 . . . . . . 7 (∃*𝑧𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩) ↔ ∃*𝑧𝑤𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)))
103, 9mpbir 233 . . . . . 6 ∃*𝑧𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)
1110moani 2637 . . . . 5 ∃*𝑧((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))
1211funoprab 7274 . . . 4 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
13 df-mul 10549 . . . . 5 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
1413funeqi 6376 . . . 4 (Fun · ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))})
1512, 14mpbir 233 . . 3 Fun ·
1613dmeqi 5773 . . . . 5 dom · = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
17 dmoprabss 7256 . . . . 5 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))} ⊆ (ℂ × ℂ)
1816, 17eqsstri 4001 . . . 4 dom · ⊆ (ℂ × ℂ)
19 0ncn 10555 . . . . 5 ¬ ∅ ∈ ℂ
20 df-c 10543 . . . . . . 7 ℂ = (R × R)
21 oveq1 7163 . . . . . . . 8 (⟨𝑧, 𝑤⟩ = 𝑥 → (⟨𝑧, 𝑤⟩ · ⟨𝑣, 𝑢⟩) = (𝑥 · ⟨𝑣, 𝑢⟩))
2221eleq1d 2897 . . . . . . 7 (⟨𝑧, 𝑤⟩ = 𝑥 → ((⟨𝑧, 𝑤⟩ · ⟨𝑣, 𝑢⟩) ∈ (R × R) ↔ (𝑥 · ⟨𝑣, 𝑢⟩) ∈ (R × R)))
23 oveq2 7164 . . . . . . . 8 (⟨𝑣, 𝑢⟩ = 𝑦 → (𝑥 · ⟨𝑣, 𝑢⟩) = (𝑥 · 𝑦))
2423eleq1d 2897 . . . . . . 7 (⟨𝑣, 𝑢⟩ = 𝑦 → ((𝑥 · ⟨𝑣, 𝑢⟩) ∈ (R × R) ↔ (𝑥 · 𝑦) ∈ (R × R)))
25 mulcnsr 10558 . . . . . . . 8 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (⟨𝑧, 𝑤⟩ · ⟨𝑣, 𝑢⟩) = ⟨((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))), ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))⟩)
26 mulclsr 10506 . . . . . . . . . . 11 ((𝑧R𝑣R) → (𝑧 ·R 𝑣) ∈ R)
27 m1r 10504 . . . . . . . . . . . 12 -1RR
28 mulclsr 10506 . . . . . . . . . . . 12 ((𝑤R𝑢R) → (𝑤 ·R 𝑢) ∈ R)
29 mulclsr 10506 . . . . . . . . . . . 12 ((-1RR ∧ (𝑤 ·R 𝑢) ∈ R) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
3027, 28, 29sylancr 589 . . . . . . . . . . 11 ((𝑤R𝑢R) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
31 addclsr 10505 . . . . . . . . . . 11 (((𝑧 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑤 ·R 𝑢)) ∈ R) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
3226, 30, 31syl2an 597 . . . . . . . . . 10 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
3332an4s 658 . . . . . . . . 9 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
34 mulclsr 10506 . . . . . . . . . . 11 ((𝑤R𝑣R) → (𝑤 ·R 𝑣) ∈ R)
35 mulclsr 10506 . . . . . . . . . . 11 ((𝑧R𝑢R) → (𝑧 ·R 𝑢) ∈ R)
36 addclsr 10505 . . . . . . . . . . 11 (((𝑤 ·R 𝑣) ∈ R ∧ (𝑧 ·R 𝑢) ∈ R) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3734, 35, 36syl2anr 598 . . . . . . . . . 10 (((𝑧R𝑢R) ∧ (𝑤R𝑣R)) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3837an42s 659 . . . . . . . . 9 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3933, 38opelxpd 5593 . . . . . . . 8 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ⟨((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))), ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))⟩ ∈ (R × R))
4025, 39eqeltrd 2913 . . . . . . 7 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (⟨𝑧, 𝑤⟩ · ⟨𝑣, 𝑢⟩) ∈ (R × R))
4120, 22, 24, 402optocl 5646 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ (R × R))
4241, 20eleqtrrdi 2924 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
4319, 42oprssdm 7329 . . . 4 (ℂ × ℂ) ⊆ dom ·
4418, 43eqssi 3983 . . 3 dom · = (ℂ × ℂ)
45 df-fn 6358 . . 3 ( · Fn (ℂ × ℂ) ↔ (Fun · ∧ dom · = (ℂ × ℂ)))
4615, 44, 45mpbir2an 709 . 2 · Fn (ℂ × ℂ)
4742rgen2 3203 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ
48 ffnov 7278 . 2 ( · :(ℂ × ℂ)⟶ℂ ↔ ( · Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ))
4946, 47, 48mpbir2an 709 1 · :(ℂ × ℂ)⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wex 1780  wcel 2114  ∃*wmo 2620  wral 3138  cop 4573   × cxp 5553  dom cdm 5555  Fun wfun 6349   Fn wfn 6350  wf 6351  (class class class)co 7156  {coprab 7157  Rcnr 10287  -1Rcm1r 10290   +R cplr 10291   ·R cmr 10292  cc 10535   · cmul 10542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-ec 8291  df-qs 8295  df-ni 10294  df-pli 10295  df-mi 10296  df-lti 10297  df-plpq 10330  df-mpq 10331  df-ltpq 10332  df-enq 10333  df-nq 10334  df-erq 10335  df-plq 10336  df-mq 10337  df-1nq 10338  df-rq 10339  df-ltnq 10340  df-np 10403  df-1p 10404  df-plp 10405  df-mp 10406  df-ltp 10407  df-enr 10477  df-nr 10478  df-plr 10479  df-mr 10480  df-m1r 10484  df-c 10543  df-mul 10549
This theorem is referenced by:  axmulcl  10575
  Copyright terms: Public domain W3C validator