| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfcnqs | Structured version Visualization version GIF version | ||
| Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 8708, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 11015), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfcnqs | ⊢ ℂ = ((R × R) / ◡ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 11015 | . 2 ⊢ ℂ = (R × R) | |
| 2 | qsid 8708 | . 2 ⊢ ((R × R) / ◡ E ) = (R × R) | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ ℂ = ((R × R) / ◡ E ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 E cep 5518 × cxp 5617 ◡ccnv 5618 / cqs 8624 Rcnr 10759 ℂcc 11007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-eprel 5519 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8627 df-qs 8631 df-c 11015 |
| This theorem is referenced by: axmulcom 11049 axaddass 11050 axmulass 11051 axdistr 11052 |
| Copyright terms: Public domain | W3C validator |