MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcnqs Structured version   Visualization version   GIF version

Theorem dfcnqs 11183
Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in from those in R. The trick involves qsid 8824, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that is a quotient set, even though it is not (compare df-c 11162), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dfcnqs ℂ = ((R × R) / E )

Proof of Theorem dfcnqs
StepHypRef Expression
1 df-c 11162 . 2 ℂ = (R × R)
2 qsid 8824 . 2 ((R × R) / E ) = (R × R)
31, 2eqtr4i 2767 1 ℂ = ((R × R) / E )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   E cep 5582   × cxp 5682  ccnv 5683   / cqs 8745  Rcnr 10906  cc 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-eprel 5583  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ec 8748  df-qs 8752  df-c 11162
This theorem is referenced by:  axmulcom  11196  axaddass  11197  axmulass  11198  axdistr  11199
  Copyright terms: Public domain W3C validator