| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfcnqs | Structured version Visualization version GIF version | ||
| Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 8754, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 11074), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfcnqs | ⊢ ℂ = ((R × R) / ◡ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 11074 | . 2 ⊢ ℂ = (R × R) | |
| 2 | qsid 8754 | . 2 ⊢ ((R × R) / ◡ E ) = (R × R) | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ ℂ = ((R × R) / ◡ E ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 E cep 5537 × cxp 5636 ◡ccnv 5637 / cqs 8670 Rcnr 10818 ℂcc 11066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-qs 8677 df-c 11074 |
| This theorem is referenced by: axmulcom 11108 axaddass 11109 axmulass 11110 axdistr 11111 |
| Copyright terms: Public domain | W3C validator |