| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfcnqs | Structured version Visualization version GIF version | ||
| Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 8824, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 11162), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfcnqs | ⊢ ℂ = ((R × R) / ◡ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 11162 | . 2 ⊢ ℂ = (R × R) | |
| 2 | qsid 8824 | . 2 ⊢ ((R × R) / ◡ E ) = (R × R) | |
| 3 | 1, 2 | eqtr4i 2767 | 1 ⊢ ℂ = ((R × R) / ◡ E ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 E cep 5582 × cxp 5682 ◡ccnv 5683 / cqs 8745 Rcnr 10906 ℂcc 11154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-eprel 5583 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ec 8748 df-qs 8752 df-c 11162 |
| This theorem is referenced by: axmulcom 11196 axaddass 11197 axmulass 11198 axdistr 11199 |
| Copyright terms: Public domain | W3C validator |