MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcnqs Structured version   Visualization version   GIF version

Theorem dfcnqs 11095
Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in from those in R. The trick involves qsid 8754, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that is a quotient set, even though it is not (compare df-c 11074), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dfcnqs ℂ = ((R × R) / E )

Proof of Theorem dfcnqs
StepHypRef Expression
1 df-c 11074 . 2 ℂ = (R × R)
2 qsid 8754 . 2 ((R × R) / E ) = (R × R)
31, 2eqtr4i 2755 1 ℂ = ((R × R) / E )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   E cep 5537   × cxp 5636  ccnv 5637   / cqs 8670  Rcnr 10818  cc 11066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-eprel 5538  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-qs 8677  df-c 11074
This theorem is referenced by:  axmulcom  11108  axaddass  11109  axmulass  11110  axdistr  11111
  Copyright terms: Public domain W3C validator