| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfcnqs | Structured version Visualization version GIF version | ||
| Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 8802, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 11140), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfcnqs | ⊢ ℂ = ((R × R) / ◡ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 11140 | . 2 ⊢ ℂ = (R × R) | |
| 2 | qsid 8802 | . 2 ⊢ ((R × R) / ◡ E ) = (R × R) | |
| 3 | 1, 2 | eqtr4i 2762 | 1 ⊢ ℂ = ((R × R) / ◡ E ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 E cep 5557 × cxp 5657 ◡ccnv 5658 / cqs 8723 Rcnr 10884 ℂcc 11132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-eprel 5558 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ec 8726 df-qs 8730 df-c 11140 |
| This theorem is referenced by: axmulcom 11174 axaddass 11175 axmulass 11176 axdistr 11177 |
| Copyright terms: Public domain | W3C validator |