![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfcnqs | Structured version Visualization version GIF version |
Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 8841, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 11190), and allows to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfcnqs | ⊢ ℂ = ((R × R) / ◡ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 11190 | . 2 ⊢ ℂ = (R × R) | |
2 | qsid 8841 | . 2 ⊢ ((R × R) / ◡ E ) = (R × R) | |
3 | 1, 2 | eqtr4i 2771 | 1 ⊢ ℂ = ((R × R) / ◡ E ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 E cep 5598 × cxp 5698 ◡ccnv 5699 / cqs 8762 Rcnr 10934 ℂcc 11182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 df-c 11190 |
This theorem is referenced by: axmulcom 11224 axaddass 11225 axmulass 11226 axdistr 11227 |
Copyright terms: Public domain | W3C validator |