MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcnsr Structured version   Visualization version   GIF version

Theorem addcnsr 11154
Description: Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcnsr (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)

Proof of Theorem addcnsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5444 . 2 ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ V
2 oveq1 7417 . . . 4 (𝑤 = 𝐴 → (𝑤 +R 𝑢) = (𝐴 +R 𝑢))
3 oveq1 7417 . . . 4 (𝑣 = 𝐵 → (𝑣 +R 𝑓) = (𝐵 +R 𝑓))
4 opeq12 4856 . . . 4 (((𝑤 +R 𝑢) = (𝐴 +R 𝑢) ∧ (𝑣 +R 𝑓) = (𝐵 +R 𝑓)) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩)
52, 3, 4syl2an 596 . . 3 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩)
6 oveq2 7418 . . . 4 (𝑢 = 𝐶 → (𝐴 +R 𝑢) = (𝐴 +R 𝐶))
7 oveq2 7418 . . . 4 (𝑓 = 𝐷 → (𝐵 +R 𝑓) = (𝐵 +R 𝐷))
8 opeq12 4856 . . . 4 (((𝐴 +R 𝑢) = (𝐴 +R 𝐶) ∧ (𝐵 +R 𝑓) = (𝐵 +R 𝐷)) → ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
96, 7, 8syl2an 596 . . 3 ((𝑢 = 𝐶𝑓 = 𝐷) → ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
105, 9sylan9eq 2791 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
11 df-add 11145 . . 3 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
12 df-c 11140 . . . . . . 7 ℂ = (R × R)
1312eleq2i 2827 . . . . . 6 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
1412eleq2i 2827 . . . . . 6 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
1513, 14anbi12i 628 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
1615anbi1i 624 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
1716oprabbii 7479 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
1811, 17eqtri 2759 . 2 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
191, 10, 18ov3 7575 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4612   × cxp 5657  (class class class)co 7410  {coprab 7411  Rcnr 10884   +R cplr 10888  cc 11132   + caddc 11137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-c 11140  df-add 11145
This theorem is referenced by:  addresr  11157  addcnsrec  11162  axaddf  11164  axcnre  11183
  Copyright terms: Public domain W3C validator