MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcnsr Structured version   Visualization version   GIF version

Theorem addcnsr 11130
Description: Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcnsr (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)

Proof of Theorem addcnsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5465 . 2 ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ V
2 oveq1 7416 . . . 4 (𝑤 = 𝐴 → (𝑤 +R 𝑢) = (𝐴 +R 𝑢))
3 oveq1 7416 . . . 4 (𝑣 = 𝐵 → (𝑣 +R 𝑓) = (𝐵 +R 𝑓))
4 opeq12 4876 . . . 4 (((𝑤 +R 𝑢) = (𝐴 +R 𝑢) ∧ (𝑣 +R 𝑓) = (𝐵 +R 𝑓)) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩)
52, 3, 4syl2an 597 . . 3 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩)
6 oveq2 7417 . . . 4 (𝑢 = 𝐶 → (𝐴 +R 𝑢) = (𝐴 +R 𝐶))
7 oveq2 7417 . . . 4 (𝑓 = 𝐷 → (𝐵 +R 𝑓) = (𝐵 +R 𝐷))
8 opeq12 4876 . . . 4 (((𝐴 +R 𝑢) = (𝐴 +R 𝐶) ∧ (𝐵 +R 𝑓) = (𝐵 +R 𝐷)) → ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
96, 7, 8syl2an 597 . . 3 ((𝑢 = 𝐶𝑓 = 𝐷) → ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
105, 9sylan9eq 2793 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
11 df-add 11121 . . 3 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
12 df-c 11116 . . . . . . 7 ℂ = (R × R)
1312eleq2i 2826 . . . . . 6 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
1412eleq2i 2826 . . . . . 6 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
1513, 14anbi12i 628 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
1615anbi1i 625 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
1716oprabbii 7476 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
1811, 17eqtri 2761 . 2 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
191, 10, 18ov3 7570 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  cop 4635   × cxp 5675  (class class class)co 7409  {coprab 7410  Rcnr 10860   +R cplr 10864  cc 11108   + caddc 11113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-c 11116  df-add 11121
This theorem is referenced by:  addresr  11133  addcnsrec  11138  axaddf  11140  axcnre  11159
  Copyright terms: Public domain W3C validator