MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcnsr Structured version   Visualization version   GIF version

Theorem addcnsr 10546
Description: Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcnsr (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)

Proof of Theorem addcnsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5321 . 2 ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ V
2 oveq1 7142 . . . 4 (𝑤 = 𝐴 → (𝑤 +R 𝑢) = (𝐴 +R 𝑢))
3 oveq1 7142 . . . 4 (𝑣 = 𝐵 → (𝑣 +R 𝑓) = (𝐵 +R 𝑓))
4 opeq12 4767 . . . 4 (((𝑤 +R 𝑢) = (𝐴 +R 𝑢) ∧ (𝑣 +R 𝑓) = (𝐵 +R 𝑓)) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩)
52, 3, 4syl2an 598 . . 3 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩)
6 oveq2 7143 . . . 4 (𝑢 = 𝐶 → (𝐴 +R 𝑢) = (𝐴 +R 𝐶))
7 oveq2 7143 . . . 4 (𝑓 = 𝐷 → (𝐵 +R 𝑓) = (𝐵 +R 𝐷))
8 opeq12 4767 . . . 4 (((𝐴 +R 𝑢) = (𝐴 +R 𝐶) ∧ (𝐵 +R 𝑓) = (𝐵 +R 𝐷)) → ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
96, 7, 8syl2an 598 . . 3 ((𝑢 = 𝐶𝑓 = 𝐷) → ⟨(𝐴 +R 𝑢), (𝐵 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
105, 9sylan9eq 2853 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩ = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
11 df-add 10537 . . 3 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
12 df-c 10532 . . . . . . 7 ℂ = (R × R)
1312eleq2i 2881 . . . . . 6 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
1412eleq2i 2881 . . . . . 6 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
1513, 14anbi12i 629 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
1615anbi1i 626 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩)))
1716oprabbii 7200 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
1811, 17eqtri 2821 . 2 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
191, 10, 18ov3 7291 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  cop 4531   × cxp 5517  (class class class)co 7135  {coprab 7136  Rcnr 10276   +R cplr 10280  cc 10524   + caddc 10529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-c 10532  df-add 10537
This theorem is referenced by:  addresr  10549  addcnsrec  10554  axaddf  10556  axcnre  10575
  Copyright terms: Public domain W3C validator