Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wuncn | Structured version Visualization version GIF version |
Description: A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wuncn.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wuncn.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
Ref | Expression |
---|---|
wuncn | ⊢ (𝜑 → ℂ ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 10621 | . 2 ⊢ ℂ = (R × R) | |
2 | wuncn.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | df-nr 10556 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
4 | df-ni 10372 | . . . . . . . . . . . 12 ⊢ N = (ω ∖ {∅}) | |
5 | wuncn.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ω ∈ 𝑈) | |
6 | 2, 5 | wundif 10214 | . . . . . . . . . . . 12 ⊢ (𝜑 → (ω ∖ {∅}) ∈ 𝑈) |
7 | 4, 6 | eqeltrid 2837 | . . . . . . . . . . 11 ⊢ (𝜑 → N ∈ 𝑈) |
8 | 2, 7, 7 | wunxp 10224 | . . . . . . . . . 10 ⊢ (𝜑 → (N × N) ∈ 𝑈) |
9 | elpqn 10425 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
10 | 9 | ssriv 3881 | . . . . . . . . . . 11 ⊢ Q ⊆ (N × N) |
11 | 10 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → Q ⊆ (N × N)) |
12 | 2, 8, 11 | wunss 10212 | . . . . . . . . 9 ⊢ (𝜑 → Q ∈ 𝑈) |
13 | 2, 12 | wunpw 10207 | . . . . . . . 8 ⊢ (𝜑 → 𝒫 Q ∈ 𝑈) |
14 | prpssnq 10490 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ P → 𝑥 ⊊ Q) | |
15 | 14 | pssssd 3988 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ P → 𝑥 ⊆ Q) |
16 | velpw 4493 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝒫 Q ↔ 𝑥 ⊆ Q) | |
17 | 15, 16 | sylibr 237 | . . . . . . . . . 10 ⊢ (𝑥 ∈ P → 𝑥 ∈ 𝒫 Q) |
18 | 17 | ssriv 3881 | . . . . . . . . 9 ⊢ P ⊆ 𝒫 Q |
19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → P ⊆ 𝒫 Q) |
20 | 2, 13, 19 | wunss 10212 | . . . . . . 7 ⊢ (𝜑 → P ∈ 𝑈) |
21 | 2, 20, 20 | wunxp 10224 | . . . . . 6 ⊢ (𝜑 → (P × P) ∈ 𝑈) |
22 | 2, 21 | wunpw 10207 | . . . . 5 ⊢ (𝜑 → 𝒫 (P × P) ∈ 𝑈) |
23 | enrer 10563 | . . . . . . 7 ⊢ ~R Er (P × P) | |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ~R Er (P × P)) |
25 | 24 | qsss 8389 | . . . . 5 ⊢ (𝜑 → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
26 | 2, 22, 25 | wunss 10212 | . . . 4 ⊢ (𝜑 → ((P × P) / ~R ) ∈ 𝑈) |
27 | 3, 26 | eqeltrid 2837 | . . 3 ⊢ (𝜑 → R ∈ 𝑈) |
28 | 2, 27, 27 | wunxp 10224 | . 2 ⊢ (𝜑 → (R × R) ∈ 𝑈) |
29 | 1, 28 | eqeltrid 2837 | 1 ⊢ (𝜑 → ℂ ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 ∖ cdif 3840 ⊆ wss 3843 ∅c0 4211 𝒫 cpw 4488 {csn 4516 × cxp 5523 ωcom 7599 Er wer 8317 / cqs 8319 WUnicwun 10200 Ncnpi 10344 Qcnq 10352 Pcnp 10359 ~R cer 10364 Rcnr 10365 ℂcc 10613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-oadd 8135 df-omul 8136 df-er 8320 df-ec 8322 df-qs 8326 df-wun 10202 df-ni 10372 df-pli 10373 df-mi 10374 df-lti 10375 df-plpq 10408 df-mpq 10409 df-ltpq 10410 df-enq 10411 df-nq 10412 df-erq 10413 df-plq 10414 df-mq 10415 df-1nq 10416 df-rq 10417 df-ltnq 10418 df-np 10481 df-plp 10483 df-ltp 10485 df-enr 10555 df-nr 10556 df-c 10621 |
This theorem is referenced by: wunndx 16607 |
Copyright terms: Public domain | W3C validator |