| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuncn | Structured version Visualization version GIF version | ||
| Description: A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wuncn.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wuncn.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuncn | ⊢ (𝜑 → ℂ ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 11161 | . 2 ⊢ ℂ = (R × R) | |
| 2 | wuncn.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | df-nr 11096 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
| 4 | df-ni 10912 | . . . . . . . . . . . 12 ⊢ N = (ω ∖ {∅}) | |
| 5 | wuncn.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | 2, 5 | wundif 10754 | . . . . . . . . . . . 12 ⊢ (𝜑 → (ω ∖ {∅}) ∈ 𝑈) |
| 7 | 4, 6 | eqeltrid 2845 | . . . . . . . . . . 11 ⊢ (𝜑 → N ∈ 𝑈) |
| 8 | 2, 7, 7 | wunxp 10764 | . . . . . . . . . 10 ⊢ (𝜑 → (N × N) ∈ 𝑈) |
| 9 | elpqn 10965 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
| 10 | 9 | ssriv 3987 | . . . . . . . . . . 11 ⊢ Q ⊆ (N × N) |
| 11 | 10 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → Q ⊆ (N × N)) |
| 12 | 2, 8, 11 | wunss 10752 | . . . . . . . . 9 ⊢ (𝜑 → Q ∈ 𝑈) |
| 13 | 2, 12 | wunpw 10747 | . . . . . . . 8 ⊢ (𝜑 → 𝒫 Q ∈ 𝑈) |
| 14 | prpssnq 11030 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ P → 𝑥 ⊊ Q) | |
| 15 | 14 | pssssd 4100 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ P → 𝑥 ⊆ Q) |
| 16 | velpw 4605 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝒫 Q ↔ 𝑥 ⊆ Q) | |
| 17 | 15, 16 | sylibr 234 | . . . . . . . . . 10 ⊢ (𝑥 ∈ P → 𝑥 ∈ 𝒫 Q) |
| 18 | 17 | ssriv 3987 | . . . . . . . . 9 ⊢ P ⊆ 𝒫 Q |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → P ⊆ 𝒫 Q) |
| 20 | 2, 13, 19 | wunss 10752 | . . . . . . 7 ⊢ (𝜑 → P ∈ 𝑈) |
| 21 | 2, 20, 20 | wunxp 10764 | . . . . . 6 ⊢ (𝜑 → (P × P) ∈ 𝑈) |
| 22 | 2, 21 | wunpw 10747 | . . . . 5 ⊢ (𝜑 → 𝒫 (P × P) ∈ 𝑈) |
| 23 | enrer 11103 | . . . . . . 7 ⊢ ~R Er (P × P) | |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ~R Er (P × P)) |
| 25 | 24 | qsss 8818 | . . . . 5 ⊢ (𝜑 → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
| 26 | 2, 22, 25 | wunss 10752 | . . . 4 ⊢ (𝜑 → ((P × P) / ~R ) ∈ 𝑈) |
| 27 | 3, 26 | eqeltrid 2845 | . . 3 ⊢ (𝜑 → R ∈ 𝑈) |
| 28 | 2, 27, 27 | wunxp 10764 | . 2 ⊢ (𝜑 → (R × R) ∈ 𝑈) |
| 29 | 1, 28 | eqeltrid 2845 | 1 ⊢ (𝜑 → ℂ ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∖ cdif 3948 ⊆ wss 3951 ∅c0 4333 𝒫 cpw 4600 {csn 4626 × cxp 5683 ωcom 7887 Er wer 8742 / cqs 8744 WUnicwun 10740 Ncnpi 10884 Qcnq 10892 Pcnp 10899 ~R cer 10904 Rcnr 10905 ℂcc 11153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-omul 8511 df-er 8745 df-ec 8747 df-qs 8751 df-wun 10742 df-ni 10912 df-pli 10913 df-mi 10914 df-lti 10915 df-plpq 10948 df-mpq 10949 df-ltpq 10950 df-enq 10951 df-nq 10952 df-erq 10953 df-plq 10954 df-mq 10955 df-1nq 10956 df-rq 10957 df-ltnq 10958 df-np 11021 df-plp 11023 df-ltp 11025 df-enr 11095 df-nr 11096 df-c 11161 |
| This theorem is referenced by: wunndx 17232 |
| Copyright terms: Public domain | W3C validator |