Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wuncn | Structured version Visualization version GIF version |
Description: A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wuncn.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wuncn.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
Ref | Expression |
---|---|
wuncn | ⊢ (𝜑 → ℂ ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 10808 | . 2 ⊢ ℂ = (R × R) | |
2 | wuncn.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | df-nr 10743 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
4 | df-ni 10559 | . . . . . . . . . . . 12 ⊢ N = (ω ∖ {∅}) | |
5 | wuncn.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ω ∈ 𝑈) | |
6 | 2, 5 | wundif 10401 | . . . . . . . . . . . 12 ⊢ (𝜑 → (ω ∖ {∅}) ∈ 𝑈) |
7 | 4, 6 | eqeltrid 2843 | . . . . . . . . . . 11 ⊢ (𝜑 → N ∈ 𝑈) |
8 | 2, 7, 7 | wunxp 10411 | . . . . . . . . . 10 ⊢ (𝜑 → (N × N) ∈ 𝑈) |
9 | elpqn 10612 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
10 | 9 | ssriv 3921 | . . . . . . . . . . 11 ⊢ Q ⊆ (N × N) |
11 | 10 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → Q ⊆ (N × N)) |
12 | 2, 8, 11 | wunss 10399 | . . . . . . . . 9 ⊢ (𝜑 → Q ∈ 𝑈) |
13 | 2, 12 | wunpw 10394 | . . . . . . . 8 ⊢ (𝜑 → 𝒫 Q ∈ 𝑈) |
14 | prpssnq 10677 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ P → 𝑥 ⊊ Q) | |
15 | 14 | pssssd 4028 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ P → 𝑥 ⊆ Q) |
16 | velpw 4535 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝒫 Q ↔ 𝑥 ⊆ Q) | |
17 | 15, 16 | sylibr 233 | . . . . . . . . . 10 ⊢ (𝑥 ∈ P → 𝑥 ∈ 𝒫 Q) |
18 | 17 | ssriv 3921 | . . . . . . . . 9 ⊢ P ⊆ 𝒫 Q |
19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → P ⊆ 𝒫 Q) |
20 | 2, 13, 19 | wunss 10399 | . . . . . . 7 ⊢ (𝜑 → P ∈ 𝑈) |
21 | 2, 20, 20 | wunxp 10411 | . . . . . 6 ⊢ (𝜑 → (P × P) ∈ 𝑈) |
22 | 2, 21 | wunpw 10394 | . . . . 5 ⊢ (𝜑 → 𝒫 (P × P) ∈ 𝑈) |
23 | enrer 10750 | . . . . . . 7 ⊢ ~R Er (P × P) | |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ~R Er (P × P)) |
25 | 24 | qsss 8525 | . . . . 5 ⊢ (𝜑 → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
26 | 2, 22, 25 | wunss 10399 | . . . 4 ⊢ (𝜑 → ((P × P) / ~R ) ∈ 𝑈) |
27 | 3, 26 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → R ∈ 𝑈) |
28 | 2, 27, 27 | wunxp 10411 | . 2 ⊢ (𝜑 → (R × R) ∈ 𝑈) |
29 | 1, 28 | eqeltrid 2843 | 1 ⊢ (𝜑 → ℂ ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 × cxp 5578 ωcom 7687 Er wer 8453 / cqs 8455 WUnicwun 10387 Ncnpi 10531 Qcnq 10539 Pcnp 10546 ~R cer 10551 Rcnr 10552 ℂcc 10800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-qs 8462 df-wun 10389 df-ni 10559 df-pli 10560 df-mi 10561 df-lti 10562 df-plpq 10595 df-mpq 10596 df-ltpq 10597 df-enq 10598 df-nq 10599 df-erq 10600 df-plq 10601 df-mq 10602 df-1nq 10603 df-rq 10604 df-ltnq 10605 df-np 10668 df-plp 10670 df-ltp 10672 df-enr 10742 df-nr 10743 df-c 10808 |
This theorem is referenced by: wunndx 16824 |
Copyright terms: Public domain | W3C validator |