| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuncn | Structured version Visualization version GIF version | ||
| Description: A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wuncn.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wuncn.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuncn | ⊢ (𝜑 → ℂ ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 11081 | . 2 ⊢ ℂ = (R × R) | |
| 2 | wuncn.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | df-nr 11016 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
| 4 | df-ni 10832 | . . . . . . . . . . . 12 ⊢ N = (ω ∖ {∅}) | |
| 5 | wuncn.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | 2, 5 | wundif 10674 | . . . . . . . . . . . 12 ⊢ (𝜑 → (ω ∖ {∅}) ∈ 𝑈) |
| 7 | 4, 6 | eqeltrid 2833 | . . . . . . . . . . 11 ⊢ (𝜑 → N ∈ 𝑈) |
| 8 | 2, 7, 7 | wunxp 10684 | . . . . . . . . . 10 ⊢ (𝜑 → (N × N) ∈ 𝑈) |
| 9 | elpqn 10885 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
| 10 | 9 | ssriv 3953 | . . . . . . . . . . 11 ⊢ Q ⊆ (N × N) |
| 11 | 10 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → Q ⊆ (N × N)) |
| 12 | 2, 8, 11 | wunss 10672 | . . . . . . . . 9 ⊢ (𝜑 → Q ∈ 𝑈) |
| 13 | 2, 12 | wunpw 10667 | . . . . . . . 8 ⊢ (𝜑 → 𝒫 Q ∈ 𝑈) |
| 14 | prpssnq 10950 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ P → 𝑥 ⊊ Q) | |
| 15 | 14 | pssssd 4066 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ P → 𝑥 ⊆ Q) |
| 16 | velpw 4571 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝒫 Q ↔ 𝑥 ⊆ Q) | |
| 17 | 15, 16 | sylibr 234 | . . . . . . . . . 10 ⊢ (𝑥 ∈ P → 𝑥 ∈ 𝒫 Q) |
| 18 | 17 | ssriv 3953 | . . . . . . . . 9 ⊢ P ⊆ 𝒫 Q |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → P ⊆ 𝒫 Q) |
| 20 | 2, 13, 19 | wunss 10672 | . . . . . . 7 ⊢ (𝜑 → P ∈ 𝑈) |
| 21 | 2, 20, 20 | wunxp 10684 | . . . . . 6 ⊢ (𝜑 → (P × P) ∈ 𝑈) |
| 22 | 2, 21 | wunpw 10667 | . . . . 5 ⊢ (𝜑 → 𝒫 (P × P) ∈ 𝑈) |
| 23 | enrer 11023 | . . . . . . 7 ⊢ ~R Er (P × P) | |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ~R Er (P × P)) |
| 25 | 24 | qsss 8752 | . . . . 5 ⊢ (𝜑 → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
| 26 | 2, 22, 25 | wunss 10672 | . . . 4 ⊢ (𝜑 → ((P × P) / ~R ) ∈ 𝑈) |
| 27 | 3, 26 | eqeltrid 2833 | . . 3 ⊢ (𝜑 → R ∈ 𝑈) |
| 28 | 2, 27, 27 | wunxp 10684 | . 2 ⊢ (𝜑 → (R × R) ∈ 𝑈) |
| 29 | 1, 28 | eqeltrid 2833 | 1 ⊢ (𝜑 → ℂ ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 × cxp 5639 ωcom 7845 Er wer 8671 / cqs 8673 WUnicwun 10660 Ncnpi 10804 Qcnq 10812 Pcnp 10819 ~R cer 10824 Rcnr 10825 ℂcc 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ec 8676 df-qs 8680 df-wun 10662 df-ni 10832 df-pli 10833 df-mi 10834 df-lti 10835 df-plpq 10868 df-mpq 10869 df-ltpq 10870 df-enq 10871 df-nq 10872 df-erq 10873 df-plq 10874 df-mq 10875 df-1nq 10876 df-rq 10877 df-ltnq 10878 df-np 10941 df-plp 10943 df-ltp 10945 df-enr 11015 df-nr 11016 df-c 11081 |
| This theorem is referenced by: wunndx 17172 |
| Copyright terms: Public domain | W3C validator |