| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuncn | Structured version Visualization version GIF version | ||
| Description: A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wuncn.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wuncn.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuncn | ⊢ (𝜑 → ℂ ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 11023 | . 2 ⊢ ℂ = (R × R) | |
| 2 | wuncn.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | df-nr 10958 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
| 4 | df-ni 10774 | . . . . . . . . . . . 12 ⊢ N = (ω ∖ {∅}) | |
| 5 | wuncn.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | 2, 5 | wundif 10616 | . . . . . . . . . . . 12 ⊢ (𝜑 → (ω ∖ {∅}) ∈ 𝑈) |
| 7 | 4, 6 | eqeltrid 2837 | . . . . . . . . . . 11 ⊢ (𝜑 → N ∈ 𝑈) |
| 8 | 2, 7, 7 | wunxp 10626 | . . . . . . . . . 10 ⊢ (𝜑 → (N × N) ∈ 𝑈) |
| 9 | elpqn 10827 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
| 10 | 9 | ssriv 3934 | . . . . . . . . . . 11 ⊢ Q ⊆ (N × N) |
| 11 | 10 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → Q ⊆ (N × N)) |
| 12 | 2, 8, 11 | wunss 10614 | . . . . . . . . 9 ⊢ (𝜑 → Q ∈ 𝑈) |
| 13 | 2, 12 | wunpw 10609 | . . . . . . . 8 ⊢ (𝜑 → 𝒫 Q ∈ 𝑈) |
| 14 | prpssnq 10892 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ P → 𝑥 ⊊ Q) | |
| 15 | 14 | pssssd 4049 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ P → 𝑥 ⊆ Q) |
| 16 | velpw 4556 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝒫 Q ↔ 𝑥 ⊆ Q) | |
| 17 | 15, 16 | sylibr 234 | . . . . . . . . . 10 ⊢ (𝑥 ∈ P → 𝑥 ∈ 𝒫 Q) |
| 18 | 17 | ssriv 3934 | . . . . . . . . 9 ⊢ P ⊆ 𝒫 Q |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → P ⊆ 𝒫 Q) |
| 20 | 2, 13, 19 | wunss 10614 | . . . . . . 7 ⊢ (𝜑 → P ∈ 𝑈) |
| 21 | 2, 20, 20 | wunxp 10626 | . . . . . 6 ⊢ (𝜑 → (P × P) ∈ 𝑈) |
| 22 | 2, 21 | wunpw 10609 | . . . . 5 ⊢ (𝜑 → 𝒫 (P × P) ∈ 𝑈) |
| 23 | enrer 10965 | . . . . . . 7 ⊢ ~R Er (P × P) | |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ~R Er (P × P)) |
| 25 | 24 | qsss 8709 | . . . . 5 ⊢ (𝜑 → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
| 26 | 2, 22, 25 | wunss 10614 | . . . 4 ⊢ (𝜑 → ((P × P) / ~R ) ∈ 𝑈) |
| 27 | 3, 26 | eqeltrid 2837 | . . 3 ⊢ (𝜑 → R ∈ 𝑈) |
| 28 | 2, 27, 27 | wunxp 10626 | . 2 ⊢ (𝜑 → (R × R) ∈ 𝑈) |
| 29 | 1, 28 | eqeltrid 2837 | 1 ⊢ (𝜑 → ℂ ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4551 {csn 4577 × cxp 5619 ωcom 7805 Er wer 8628 / cqs 8630 WUnicwun 10602 Ncnpi 10746 Qcnq 10754 Pcnp 10761 ~R cer 10766 Rcnr 10767 ℂcc 11015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-omul 8399 df-er 8631 df-ec 8633 df-qs 8637 df-wun 10604 df-ni 10774 df-pli 10775 df-mi 10776 df-lti 10777 df-plpq 10810 df-mpq 10811 df-ltpq 10812 df-enq 10813 df-nq 10814 df-erq 10815 df-plq 10816 df-mq 10817 df-1nq 10818 df-rq 10819 df-ltnq 10820 df-np 10883 df-plp 10885 df-ltp 10887 df-enr 10957 df-nr 10958 df-c 11023 |
| This theorem is referenced by: wunndx 17113 |
| Copyright terms: Public domain | W3C validator |