MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncn Structured version   Visualization version   GIF version

Theorem wuncn 11239
Description: A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wuncn.1 (𝜑𝑈 ∈ WUni)
wuncn.2 (𝜑 → ω ∈ 𝑈)
Assertion
Ref Expression
wuncn (𝜑 → ℂ ∈ 𝑈)

Proof of Theorem wuncn
StepHypRef Expression
1 df-c 11190 . 2 ℂ = (R × R)
2 wuncn.1 . . 3 (𝜑𝑈 ∈ WUni)
3 df-nr 11125 . . . 4 R = ((P × P) / ~R )
4 df-ni 10941 . . . . . . . . . . . 12 N = (ω ∖ {∅})
5 wuncn.2 . . . . . . . . . . . . 13 (𝜑 → ω ∈ 𝑈)
62, 5wundif 10783 . . . . . . . . . . . 12 (𝜑 → (ω ∖ {∅}) ∈ 𝑈)
74, 6eqeltrid 2848 . . . . . . . . . . 11 (𝜑N𝑈)
82, 7, 7wunxp 10793 . . . . . . . . . 10 (𝜑 → (N × N) ∈ 𝑈)
9 elpqn 10994 . . . . . . . . . . . 12 (𝑥Q𝑥 ∈ (N × N))
109ssriv 4012 . . . . . . . . . . 11 Q ⊆ (N × N)
1110a1i 11 . . . . . . . . . 10 (𝜑Q ⊆ (N × N))
122, 8, 11wunss 10781 . . . . . . . . 9 (𝜑Q𝑈)
132, 12wunpw 10776 . . . . . . . 8 (𝜑 → 𝒫 Q𝑈)
14 prpssnq 11059 . . . . . . . . . . . 12 (𝑥P𝑥Q)
1514pssssd 4123 . . . . . . . . . . 11 (𝑥P𝑥Q)
16 velpw 4627 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 Q𝑥Q)
1715, 16sylibr 234 . . . . . . . . . 10 (𝑥P𝑥 ∈ 𝒫 Q)
1817ssriv 4012 . . . . . . . . 9 P ⊆ 𝒫 Q
1918a1i 11 . . . . . . . 8 (𝜑P ⊆ 𝒫 Q)
202, 13, 19wunss 10781 . . . . . . 7 (𝜑P𝑈)
212, 20, 20wunxp 10793 . . . . . 6 (𝜑 → (P × P) ∈ 𝑈)
222, 21wunpw 10776 . . . . 5 (𝜑 → 𝒫 (P × P) ∈ 𝑈)
23 enrer 11132 . . . . . . 7 ~R Er (P × P)
2423a1i 11 . . . . . 6 (𝜑 → ~R Er (P × P))
2524qsss 8836 . . . . 5 (𝜑 → ((P × P) / ~R ) ⊆ 𝒫 (P × P))
262, 22, 25wunss 10781 . . . 4 (𝜑 → ((P × P) / ~R ) ∈ 𝑈)
273, 26eqeltrid 2848 . . 3 (𝜑R𝑈)
282, 27, 27wunxp 10793 . 2 (𝜑 → (R × R) ∈ 𝑈)
291, 28eqeltrid 2848 1 (𝜑 → ℂ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cdif 3973  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   × cxp 5698  ωcom 7903   Er wer 8760   / cqs 8762  WUnicwun 10769  Ncnpi 10913  Qcnq 10921  Pcnp 10928   ~R cer 10933  Rcnr 10934  cc 11182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-wun 10771  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-plp 11052  df-ltp 11054  df-enr 11124  df-nr 11125  df-c 11190
This theorem is referenced by:  wunndx  17242
  Copyright terms: Public domain W3C validator