MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncn Structured version   Visualization version   GIF version

Theorem wuncn 11210
Description: A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wuncn.1 (𝜑𝑈 ∈ WUni)
wuncn.2 (𝜑 → ω ∈ 𝑈)
Assertion
Ref Expression
wuncn (𝜑 → ℂ ∈ 𝑈)

Proof of Theorem wuncn
StepHypRef Expression
1 df-c 11161 . 2 ℂ = (R × R)
2 wuncn.1 . . 3 (𝜑𝑈 ∈ WUni)
3 df-nr 11096 . . . 4 R = ((P × P) / ~R )
4 df-ni 10912 . . . . . . . . . . . 12 N = (ω ∖ {∅})
5 wuncn.2 . . . . . . . . . . . . 13 (𝜑 → ω ∈ 𝑈)
62, 5wundif 10754 . . . . . . . . . . . 12 (𝜑 → (ω ∖ {∅}) ∈ 𝑈)
74, 6eqeltrid 2845 . . . . . . . . . . 11 (𝜑N𝑈)
82, 7, 7wunxp 10764 . . . . . . . . . 10 (𝜑 → (N × N) ∈ 𝑈)
9 elpqn 10965 . . . . . . . . . . . 12 (𝑥Q𝑥 ∈ (N × N))
109ssriv 3987 . . . . . . . . . . 11 Q ⊆ (N × N)
1110a1i 11 . . . . . . . . . 10 (𝜑Q ⊆ (N × N))
122, 8, 11wunss 10752 . . . . . . . . 9 (𝜑Q𝑈)
132, 12wunpw 10747 . . . . . . . 8 (𝜑 → 𝒫 Q𝑈)
14 prpssnq 11030 . . . . . . . . . . . 12 (𝑥P𝑥Q)
1514pssssd 4100 . . . . . . . . . . 11 (𝑥P𝑥Q)
16 velpw 4605 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 Q𝑥Q)
1715, 16sylibr 234 . . . . . . . . . 10 (𝑥P𝑥 ∈ 𝒫 Q)
1817ssriv 3987 . . . . . . . . 9 P ⊆ 𝒫 Q
1918a1i 11 . . . . . . . 8 (𝜑P ⊆ 𝒫 Q)
202, 13, 19wunss 10752 . . . . . . 7 (𝜑P𝑈)
212, 20, 20wunxp 10764 . . . . . 6 (𝜑 → (P × P) ∈ 𝑈)
222, 21wunpw 10747 . . . . 5 (𝜑 → 𝒫 (P × P) ∈ 𝑈)
23 enrer 11103 . . . . . . 7 ~R Er (P × P)
2423a1i 11 . . . . . 6 (𝜑 → ~R Er (P × P))
2524qsss 8818 . . . . 5 (𝜑 → ((P × P) / ~R ) ⊆ 𝒫 (P × P))
262, 22, 25wunss 10752 . . . 4 (𝜑 → ((P × P) / ~R ) ∈ 𝑈)
273, 26eqeltrid 2845 . . 3 (𝜑R𝑈)
282, 27, 27wunxp 10764 . 2 (𝜑 → (R × R) ∈ 𝑈)
291, 28eqeltrid 2845 1 (𝜑 → ℂ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cdif 3948  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626   × cxp 5683  ωcom 7887   Er wer 8742   / cqs 8744  WUnicwun 10740  Ncnpi 10884  Qcnq 10892  Pcnp 10899   ~R cer 10904  Rcnr 10905  cc 11153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-wun 10742  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-rq 10957  df-ltnq 10958  df-np 11021  df-plp 11023  df-ltp 11025  df-enr 11095  df-nr 11096  df-c 11161
This theorem is referenced by:  wunndx  17232
  Copyright terms: Public domain W3C validator