| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuncn | Structured version Visualization version GIF version | ||
| Description: A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wuncn.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wuncn.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuncn | ⊢ (𝜑 → ℂ ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 11135 | . 2 ⊢ ℂ = (R × R) | |
| 2 | wuncn.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | df-nr 11070 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
| 4 | df-ni 10886 | . . . . . . . . . . . 12 ⊢ N = (ω ∖ {∅}) | |
| 5 | wuncn.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | 2, 5 | wundif 10728 | . . . . . . . . . . . 12 ⊢ (𝜑 → (ω ∖ {∅}) ∈ 𝑈) |
| 7 | 4, 6 | eqeltrid 2838 | . . . . . . . . . . 11 ⊢ (𝜑 → N ∈ 𝑈) |
| 8 | 2, 7, 7 | wunxp 10738 | . . . . . . . . . 10 ⊢ (𝜑 → (N × N) ∈ 𝑈) |
| 9 | elpqn 10939 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
| 10 | 9 | ssriv 3962 | . . . . . . . . . . 11 ⊢ Q ⊆ (N × N) |
| 11 | 10 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → Q ⊆ (N × N)) |
| 12 | 2, 8, 11 | wunss 10726 | . . . . . . . . 9 ⊢ (𝜑 → Q ∈ 𝑈) |
| 13 | 2, 12 | wunpw 10721 | . . . . . . . 8 ⊢ (𝜑 → 𝒫 Q ∈ 𝑈) |
| 14 | prpssnq 11004 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ P → 𝑥 ⊊ Q) | |
| 15 | 14 | pssssd 4075 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ P → 𝑥 ⊆ Q) |
| 16 | velpw 4580 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝒫 Q ↔ 𝑥 ⊆ Q) | |
| 17 | 15, 16 | sylibr 234 | . . . . . . . . . 10 ⊢ (𝑥 ∈ P → 𝑥 ∈ 𝒫 Q) |
| 18 | 17 | ssriv 3962 | . . . . . . . . 9 ⊢ P ⊆ 𝒫 Q |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → P ⊆ 𝒫 Q) |
| 20 | 2, 13, 19 | wunss 10726 | . . . . . . 7 ⊢ (𝜑 → P ∈ 𝑈) |
| 21 | 2, 20, 20 | wunxp 10738 | . . . . . 6 ⊢ (𝜑 → (P × P) ∈ 𝑈) |
| 22 | 2, 21 | wunpw 10721 | . . . . 5 ⊢ (𝜑 → 𝒫 (P × P) ∈ 𝑈) |
| 23 | enrer 11077 | . . . . . . 7 ⊢ ~R Er (P × P) | |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ~R Er (P × P)) |
| 25 | 24 | qsss 8792 | . . . . 5 ⊢ (𝜑 → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
| 26 | 2, 22, 25 | wunss 10726 | . . . 4 ⊢ (𝜑 → ((P × P) / ~R ) ∈ 𝑈) |
| 27 | 3, 26 | eqeltrid 2838 | . . 3 ⊢ (𝜑 → R ∈ 𝑈) |
| 28 | 2, 27, 27 | wunxp 10738 | . 2 ⊢ (𝜑 → (R × R) ∈ 𝑈) |
| 29 | 1, 28 | eqeltrid 2838 | 1 ⊢ (𝜑 → ℂ ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 {csn 4601 × cxp 5652 ωcom 7861 Er wer 8716 / cqs 8718 WUnicwun 10714 Ncnpi 10858 Qcnq 10866 Pcnp 10873 ~R cer 10878 Rcnr 10879 ℂcc 11127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ec 8721 df-qs 8725 df-wun 10716 df-ni 10886 df-pli 10887 df-mi 10888 df-lti 10889 df-plpq 10922 df-mpq 10923 df-ltpq 10924 df-enq 10925 df-nq 10926 df-erq 10927 df-plq 10928 df-mq 10929 df-1nq 10930 df-rq 10931 df-ltnq 10932 df-np 10995 df-plp 10997 df-ltp 10999 df-enr 11069 df-nr 11070 df-c 11135 |
| This theorem is referenced by: wunndx 17214 |
| Copyright terms: Public domain | W3C validator |