MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncn Structured version   Visualization version   GIF version

Theorem wuncn 11165
Description: A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wuncn.1 (𝜑𝑈 ∈ WUni)
wuncn.2 (𝜑 → ω ∈ 𝑈)
Assertion
Ref Expression
wuncn (𝜑 → ℂ ∈ 𝑈)

Proof of Theorem wuncn
StepHypRef Expression
1 df-c 11116 . 2 ℂ = (R × R)
2 wuncn.1 . . 3 (𝜑𝑈 ∈ WUni)
3 df-nr 11051 . . . 4 R = ((P × P) / ~R )
4 df-ni 10867 . . . . . . . . . . . 12 N = (ω ∖ {∅})
5 wuncn.2 . . . . . . . . . . . . 13 (𝜑 → ω ∈ 𝑈)
62, 5wundif 10709 . . . . . . . . . . . 12 (𝜑 → (ω ∖ {∅}) ∈ 𝑈)
74, 6eqeltrid 2838 . . . . . . . . . . 11 (𝜑N𝑈)
82, 7, 7wunxp 10719 . . . . . . . . . 10 (𝜑 → (N × N) ∈ 𝑈)
9 elpqn 10920 . . . . . . . . . . . 12 (𝑥Q𝑥 ∈ (N × N))
109ssriv 3987 . . . . . . . . . . 11 Q ⊆ (N × N)
1110a1i 11 . . . . . . . . . 10 (𝜑Q ⊆ (N × N))
122, 8, 11wunss 10707 . . . . . . . . 9 (𝜑Q𝑈)
132, 12wunpw 10702 . . . . . . . 8 (𝜑 → 𝒫 Q𝑈)
14 prpssnq 10985 . . . . . . . . . . . 12 (𝑥P𝑥Q)
1514pssssd 4098 . . . . . . . . . . 11 (𝑥P𝑥Q)
16 velpw 4608 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 Q𝑥Q)
1715, 16sylibr 233 . . . . . . . . . 10 (𝑥P𝑥 ∈ 𝒫 Q)
1817ssriv 3987 . . . . . . . . 9 P ⊆ 𝒫 Q
1918a1i 11 . . . . . . . 8 (𝜑P ⊆ 𝒫 Q)
202, 13, 19wunss 10707 . . . . . . 7 (𝜑P𝑈)
212, 20, 20wunxp 10719 . . . . . 6 (𝜑 → (P × P) ∈ 𝑈)
222, 21wunpw 10702 . . . . 5 (𝜑 → 𝒫 (P × P) ∈ 𝑈)
23 enrer 11058 . . . . . . 7 ~R Er (P × P)
2423a1i 11 . . . . . 6 (𝜑 → ~R Er (P × P))
2524qsss 8772 . . . . 5 (𝜑 → ((P × P) / ~R ) ⊆ 𝒫 (P × P))
262, 22, 25wunss 10707 . . . 4 (𝜑 → ((P × P) / ~R ) ∈ 𝑈)
273, 26eqeltrid 2838 . . 3 (𝜑R𝑈)
282, 27, 27wunxp 10719 . 2 (𝜑 → (R × R) ∈ 𝑈)
291, 28eqeltrid 2838 1 (𝜑 → ℂ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cdif 3946  wss 3949  c0 4323  𝒫 cpw 4603  {csn 4629   × cxp 5675  ωcom 7855   Er wer 8700   / cqs 8702  WUnicwun 10695  Ncnpi 10839  Qcnq 10847  Pcnp 10854   ~R cer 10859  Rcnr 10860  cc 11108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-omul 8471  df-er 8703  df-ec 8705  df-qs 8709  df-wun 10697  df-ni 10867  df-pli 10868  df-mi 10869  df-lti 10870  df-plpq 10903  df-mpq 10904  df-ltpq 10905  df-enq 10906  df-nq 10907  df-erq 10908  df-plq 10909  df-mq 10910  df-1nq 10911  df-rq 10912  df-ltnq 10913  df-np 10976  df-plp 10978  df-ltp 10980  df-enr 11050  df-nr 11051  df-c 11116
This theorem is referenced by:  wunndx  17128
  Copyright terms: Public domain W3C validator