| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuncn | Structured version Visualization version GIF version | ||
| Description: A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wuncn.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wuncn.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuncn | ⊢ (𝜑 → ℂ ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 11074 | . 2 ⊢ ℂ = (R × R) | |
| 2 | wuncn.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | df-nr 11009 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
| 4 | df-ni 10825 | . . . . . . . . . . . 12 ⊢ N = (ω ∖ {∅}) | |
| 5 | wuncn.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 6 | 2, 5 | wundif 10667 | . . . . . . . . . . . 12 ⊢ (𝜑 → (ω ∖ {∅}) ∈ 𝑈) |
| 7 | 4, 6 | eqeltrid 2832 | . . . . . . . . . . 11 ⊢ (𝜑 → N ∈ 𝑈) |
| 8 | 2, 7, 7 | wunxp 10677 | . . . . . . . . . 10 ⊢ (𝜑 → (N × N) ∈ 𝑈) |
| 9 | elpqn 10878 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
| 10 | 9 | ssriv 3950 | . . . . . . . . . . 11 ⊢ Q ⊆ (N × N) |
| 11 | 10 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → Q ⊆ (N × N)) |
| 12 | 2, 8, 11 | wunss 10665 | . . . . . . . . 9 ⊢ (𝜑 → Q ∈ 𝑈) |
| 13 | 2, 12 | wunpw 10660 | . . . . . . . 8 ⊢ (𝜑 → 𝒫 Q ∈ 𝑈) |
| 14 | prpssnq 10943 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ P → 𝑥 ⊊ Q) | |
| 15 | 14 | pssssd 4063 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ P → 𝑥 ⊆ Q) |
| 16 | velpw 4568 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝒫 Q ↔ 𝑥 ⊆ Q) | |
| 17 | 15, 16 | sylibr 234 | . . . . . . . . . 10 ⊢ (𝑥 ∈ P → 𝑥 ∈ 𝒫 Q) |
| 18 | 17 | ssriv 3950 | . . . . . . . . 9 ⊢ P ⊆ 𝒫 Q |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → P ⊆ 𝒫 Q) |
| 20 | 2, 13, 19 | wunss 10665 | . . . . . . 7 ⊢ (𝜑 → P ∈ 𝑈) |
| 21 | 2, 20, 20 | wunxp 10677 | . . . . . 6 ⊢ (𝜑 → (P × P) ∈ 𝑈) |
| 22 | 2, 21 | wunpw 10660 | . . . . 5 ⊢ (𝜑 → 𝒫 (P × P) ∈ 𝑈) |
| 23 | enrer 11016 | . . . . . . 7 ⊢ ~R Er (P × P) | |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ~R Er (P × P)) |
| 25 | 24 | qsss 8749 | . . . . 5 ⊢ (𝜑 → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
| 26 | 2, 22, 25 | wunss 10665 | . . . 4 ⊢ (𝜑 → ((P × P) / ~R ) ∈ 𝑈) |
| 27 | 3, 26 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → R ∈ 𝑈) |
| 28 | 2, 27, 27 | wunxp 10677 | . 2 ⊢ (𝜑 → (R × R) ∈ 𝑈) |
| 29 | 1, 28 | eqeltrid 2832 | 1 ⊢ (𝜑 → ℂ ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 {csn 4589 × cxp 5636 ωcom 7842 Er wer 8668 / cqs 8670 WUnicwun 10653 Ncnpi 10797 Qcnq 10805 Pcnp 10812 ~R cer 10817 Rcnr 10818 ℂcc 11066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ec 8673 df-qs 8677 df-wun 10655 df-ni 10825 df-pli 10826 df-mi 10827 df-lti 10828 df-plpq 10861 df-mpq 10862 df-ltpq 10863 df-enq 10864 df-nq 10865 df-erq 10866 df-plq 10867 df-mq 10868 df-1nq 10869 df-rq 10870 df-ltnq 10871 df-np 10934 df-plp 10936 df-ltp 10938 df-enr 11008 df-nr 11009 df-c 11074 |
| This theorem is referenced by: wunndx 17165 |
| Copyright terms: Public domain | W3C validator |