MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcnre Structured version   Visualization version   GIF version

Theorem axcnre 11233
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 11257. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axcnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem axcnre
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 11190 . 2 ℂ = (R × R)
2 eqeq1 2744 . . 3 (⟨𝑧, 𝑤⟩ = 𝐴 → (⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ 𝐴 = (𝑥 + (i · 𝑦))))
322rexbidv 3228 . 2 (⟨𝑧, 𝑤⟩ = 𝐴 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))))
4 opelreal 11199 . . . . . 6 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
5 opelreal 11199 . . . . . 6 (⟨𝑤, 0R⟩ ∈ ℝ ↔ 𝑤R)
64, 5anbi12i 627 . . . . 5 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ↔ (𝑧R𝑤R))
76biimpri 228 . . . 4 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ))
8 df-i 11193 . . . . . . . . 9 i = ⟨0R, 1R
98oveq1i 7458 . . . . . . . 8 (i · ⟨𝑤, 0R⟩) = (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩)
10 0r 11149 . . . . . . . . . 10 0RR
11 1sr 11150 . . . . . . . . . . 11 1RR
12 mulcnsr 11205 . . . . . . . . . . 11 (((0RR ∧ 1RR) ∧ (𝑤R ∧ 0RR)) → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
1310, 11, 12mpanl12 701 . . . . . . . . . 10 ((𝑤R ∧ 0RR) → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
1410, 13mpan2 690 . . . . . . . . 9 (𝑤R → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩)
15 mulcomsr 11158 . . . . . . . . . . . . 13 (0R ·R 𝑤) = (𝑤 ·R 0R)
16 00sr 11168 . . . . . . . . . . . . 13 (𝑤R → (𝑤 ·R 0R) = 0R)
1715, 16eqtrid 2792 . . . . . . . . . . . 12 (𝑤R → (0R ·R 𝑤) = 0R)
1817oveq1d 7463 . . . . . . . . . . 11 (𝑤R → ((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))) = (0R +R (-1R ·R (1R ·R 0R))))
19 00sr 11168 . . . . . . . . . . . . . . . 16 (1RR → (1R ·R 0R) = 0R)
2011, 19ax-mp 5 . . . . . . . . . . . . . . 15 (1R ·R 0R) = 0R
2120oveq2i 7459 . . . . . . . . . . . . . 14 (-1R ·R (1R ·R 0R)) = (-1R ·R 0R)
22 m1r 11151 . . . . . . . . . . . . . . 15 -1RR
23 00sr 11168 . . . . . . . . . . . . . . 15 (-1RR → (-1R ·R 0R) = 0R)
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (-1R ·R 0R) = 0R
2521, 24eqtri 2768 . . . . . . . . . . . . 13 (-1R ·R (1R ·R 0R)) = 0R
2625oveq2i 7459 . . . . . . . . . . . 12 (0R +R (-1R ·R (1R ·R 0R))) = (0R +R 0R)
27 0idsr 11166 . . . . . . . . . . . . 13 (0RR → (0R +R 0R) = 0R)
2810, 27ax-mp 5 . . . . . . . . . . . 12 (0R +R 0R) = 0R
2926, 28eqtri 2768 . . . . . . . . . . 11 (0R +R (-1R ·R (1R ·R 0R))) = 0R
3018, 29eqtrdi 2796 . . . . . . . . . 10 (𝑤R → ((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))) = 0R)
31 mulcomsr 11158 . . . . . . . . . . . . 13 (1R ·R 𝑤) = (𝑤 ·R 1R)
32 1idsr 11167 . . . . . . . . . . . . 13 (𝑤R → (𝑤 ·R 1R) = 𝑤)
3331, 32eqtrid 2792 . . . . . . . . . . . 12 (𝑤R → (1R ·R 𝑤) = 𝑤)
3433oveq1d 7463 . . . . . . . . . . 11 (𝑤R → ((1R ·R 𝑤) +R (0R ·R 0R)) = (𝑤 +R (0R ·R 0R)))
35 00sr 11168 . . . . . . . . . . . . . 14 (0RR → (0R ·R 0R) = 0R)
3610, 35ax-mp 5 . . . . . . . . . . . . 13 (0R ·R 0R) = 0R
3736oveq2i 7459 . . . . . . . . . . . 12 (𝑤 +R (0R ·R 0R)) = (𝑤 +R 0R)
38 0idsr 11166 . . . . . . . . . . . 12 (𝑤R → (𝑤 +R 0R) = 𝑤)
3937, 38eqtrid 2792 . . . . . . . . . . 11 (𝑤R → (𝑤 +R (0R ·R 0R)) = 𝑤)
4034, 39eqtrd 2780 . . . . . . . . . 10 (𝑤R → ((1R ·R 𝑤) +R (0R ·R 0R)) = 𝑤)
4130, 40opeq12d 4905 . . . . . . . . 9 (𝑤R → ⟨((0R ·R 𝑤) +R (-1R ·R (1R ·R 0R))), ((1R ·R 𝑤) +R (0R ·R 0R))⟩ = ⟨0R, 𝑤⟩)
4214, 41eqtrd 2780 . . . . . . . 8 (𝑤R → (⟨0R, 1R⟩ · ⟨𝑤, 0R⟩) = ⟨0R, 𝑤⟩)
439, 42eqtrid 2792 . . . . . . 7 (𝑤R → (i · ⟨𝑤, 0R⟩) = ⟨0R, 𝑤⟩)
4443oveq2d 7464 . . . . . 6 (𝑤R → (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)) = (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩))
4544adantl 481 . . . . 5 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)) = (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩))
46 addcnsr 11204 . . . . . . 7 (((𝑧R ∧ 0RR) ∧ (0RR𝑤R)) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
4710, 46mpanl2 700 . . . . . 6 ((𝑧R ∧ (0RR𝑤R)) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
4810, 47mpanr1 702 . . . . 5 ((𝑧R𝑤R) → (⟨𝑧, 0R⟩ + ⟨0R, 𝑤⟩) = ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩)
49 0idsr 11166 . . . . . 6 (𝑧R → (𝑧 +R 0R) = 𝑧)
50 addcomsr 11156 . . . . . . 7 (0R +R 𝑤) = (𝑤 +R 0R)
5150, 38eqtrid 2792 . . . . . 6 (𝑤R → (0R +R 𝑤) = 𝑤)
52 opeq12 4899 . . . . . 6 (((𝑧 +R 0R) = 𝑧 ∧ (0R +R 𝑤) = 𝑤) → ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩ = ⟨𝑧, 𝑤⟩)
5349, 51, 52syl2an 595 . . . . 5 ((𝑧R𝑤R) → ⟨(𝑧 +R 0R), (0R +R 𝑤)⟩ = ⟨𝑧, 𝑤⟩)
5445, 48, 533eqtrrd 2785 . . . 4 ((𝑧R𝑤R) → ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
55 opex 5484 . . . . 5 𝑧, 0R⟩ ∈ V
56 opex 5484 . . . . 5 𝑤, 0R⟩ ∈ V
57 eleq1 2832 . . . . . . 7 (𝑥 = ⟨𝑧, 0R⟩ → (𝑥 ∈ ℝ ↔ ⟨𝑧, 0R⟩ ∈ ℝ))
58 eleq1 2832 . . . . . . 7 (𝑦 = ⟨𝑤, 0R⟩ → (𝑦 ∈ ℝ ↔ ⟨𝑤, 0R⟩ ∈ ℝ))
5957, 58bi2anan9 637 . . . . . 6 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ)))
60 oveq1 7455 . . . . . . . 8 (𝑥 = ⟨𝑧, 0R⟩ → (𝑥 + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · 𝑦)))
61 oveq2 7456 . . . . . . . . 9 (𝑦 = ⟨𝑤, 0R⟩ → (i · 𝑦) = (i · ⟨𝑤, 0R⟩))
6261oveq2d 7464 . . . . . . . 8 (𝑦 = ⟨𝑤, 0R⟩ → (⟨𝑧, 0R⟩ + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
6360, 62sylan9eq 2800 . . . . . . 7 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (𝑥 + (i · 𝑦)) = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))
6463eqeq2d 2751 . . . . . 6 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩))))
6559, 64anbi12d 631 . . . . 5 ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))) ↔ ((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩)))))
6655, 56, 65spc2ev 3620 . . . 4 (((⟨𝑧, 0R⟩ ∈ ℝ ∧ ⟨𝑤, 0R⟩ ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (⟨𝑧, 0R⟩ + (i · ⟨𝑤, 0R⟩))) → ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
677, 54, 66syl2anc 583 . . 3 ((𝑧R𝑤R) → ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
68 r2ex 3202 . . 3 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)) ↔ ∃𝑥𝑦((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦))))
6967, 68sylibr 234 . 2 ((𝑧R𝑤R) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ⟨𝑧, 𝑤⟩ = (𝑥 + (i · 𝑦)))
701, 3, 69optocl 5794 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076  cop 4654  (class class class)co 7448  Rcnr 10934  0Rc0r 10935  1Rc1r 10936  -1Rcm1r 10937   +R cplr 10938   ·R cmr 10939  cc 11182  cr 11183  ici 11186   + caddc 11187   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-1p 11051  df-plp 11052  df-mp 11053  df-ltp 11054  df-enr 11124  df-nr 11125  df-plr 11126  df-mr 11127  df-0r 11129  df-1r 11130  df-m1r 11131  df-c 11190  df-i 11193  df-r 11194  df-add 11195  df-mul 11196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator