MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcnsr Structured version   Visualization version   GIF version

Theorem mulcnsr 10546
Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcnsr (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)

Proof of Theorem mulcnsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5347 . 2 ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ V
2 oveq1 7152 . . . . 5 (𝑤 = 𝐴 → (𝑤 ·R 𝑢) = (𝐴 ·R 𝑢))
3 oveq1 7152 . . . . . 6 (𝑣 = 𝐵 → (𝑣 ·R 𝑓) = (𝐵 ·R 𝑓))
43oveq2d 7161 . . . . 5 (𝑣 = 𝐵 → (-1R ·R (𝑣 ·R 𝑓)) = (-1R ·R (𝐵 ·R 𝑓)))
52, 4oveqan12d 7164 . . . 4 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))) = ((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))))
6 oveq1 7152 . . . . 5 (𝑣 = 𝐵 → (𝑣 ·R 𝑢) = (𝐵 ·R 𝑢))
7 oveq1 7152 . . . . 5 (𝑤 = 𝐴 → (𝑤 ·R 𝑓) = (𝐴 ·R 𝑓))
86, 7oveqan12rd 7165 . . . 4 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓)) = ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓)))
95, 8opeq12d 4803 . . 3 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))), ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓))⟩)
10 oveq2 7153 . . . . 5 (𝑢 = 𝐶 → (𝐴 ·R 𝑢) = (𝐴 ·R 𝐶))
11 oveq2 7153 . . . . . 6 (𝑓 = 𝐷 → (𝐵 ·R 𝑓) = (𝐵 ·R 𝐷))
1211oveq2d 7161 . . . . 5 (𝑓 = 𝐷 → (-1R ·R (𝐵 ·R 𝑓)) = (-1R ·R (𝐵 ·R 𝐷)))
1310, 12oveqan12d 7164 . . . 4 ((𝑢 = 𝐶𝑓 = 𝐷) → ((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))) = ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))))
14 oveq2 7153 . . . . 5 (𝑢 = 𝐶 → (𝐵 ·R 𝑢) = (𝐵 ·R 𝐶))
15 oveq2 7153 . . . . 5 (𝑓 = 𝐷 → (𝐴 ·R 𝑓) = (𝐴 ·R 𝐷))
1614, 15oveqan12d 7164 . . . 4 ((𝑢 = 𝐶𝑓 = 𝐷) → ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓)) = ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)))
1713, 16opeq12d 4803 . . 3 ((𝑢 = 𝐶𝑓 = 𝐷) → ⟨((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))), ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
189, 17sylan9eq 2873 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
19 df-mul 10537 . . 3 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
20 df-c 10531 . . . . . . 7 ℂ = (R × R)
2120eleq2i 2901 . . . . . 6 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
2220eleq2i 2901 . . . . . 6 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
2321, 22anbi12i 626 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
2423anbi1i 623 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)))
2524oprabbii 7210 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
2619, 25eqtri 2841 . 2 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
271, 18, 26ov3 7300 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wex 1771  wcel 2105  cop 4563   × cxp 5546  (class class class)co 7145  {coprab 7146  Rcnr 10275  -1Rcm1r 10278   +R cplr 10279   ·R cmr 10280  cc 10523   · cmul 10530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7148  df-oprab 7149  df-c 10531  df-mul 10537
This theorem is referenced by:  mulresr  10549  mulcnsrec  10554  axmulf  10556  axi2m1  10569  axcnre  10574
  Copyright terms: Public domain W3C validator