MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcnsr Structured version   Visualization version   GIF version

Theorem mulcnsr 11089
Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcnsr (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)

Proof of Theorem mulcnsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5424 . 2 ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ V
2 oveq1 7394 . . . . 5 (𝑤 = 𝐴 → (𝑤 ·R 𝑢) = (𝐴 ·R 𝑢))
3 oveq1 7394 . . . . . 6 (𝑣 = 𝐵 → (𝑣 ·R 𝑓) = (𝐵 ·R 𝑓))
43oveq2d 7403 . . . . 5 (𝑣 = 𝐵 → (-1R ·R (𝑣 ·R 𝑓)) = (-1R ·R (𝐵 ·R 𝑓)))
52, 4oveqan12d 7406 . . . 4 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))) = ((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))))
6 oveq1 7394 . . . . 5 (𝑣 = 𝐵 → (𝑣 ·R 𝑢) = (𝐵 ·R 𝑢))
7 oveq1 7394 . . . . 5 (𝑤 = 𝐴 → (𝑤 ·R 𝑓) = (𝐴 ·R 𝑓))
86, 7oveqan12rd 7407 . . . 4 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓)) = ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓)))
95, 8opeq12d 4845 . . 3 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))), ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓))⟩)
10 oveq2 7395 . . . . 5 (𝑢 = 𝐶 → (𝐴 ·R 𝑢) = (𝐴 ·R 𝐶))
11 oveq2 7395 . . . . . 6 (𝑓 = 𝐷 → (𝐵 ·R 𝑓) = (𝐵 ·R 𝐷))
1211oveq2d 7403 . . . . 5 (𝑓 = 𝐷 → (-1R ·R (𝐵 ·R 𝑓)) = (-1R ·R (𝐵 ·R 𝐷)))
1310, 12oveqan12d 7406 . . . 4 ((𝑢 = 𝐶𝑓 = 𝐷) → ((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))) = ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))))
14 oveq2 7395 . . . . 5 (𝑢 = 𝐶 → (𝐵 ·R 𝑢) = (𝐵 ·R 𝐶))
15 oveq2 7395 . . . . 5 (𝑓 = 𝐷 → (𝐴 ·R 𝑓) = (𝐴 ·R 𝐷))
1614, 15oveqan12d 7406 . . . 4 ((𝑢 = 𝐶𝑓 = 𝐷) → ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓)) = ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)))
1713, 16opeq12d 4845 . . 3 ((𝑢 = 𝐶𝑓 = 𝐷) → ⟨((𝐴 ·R 𝑢) +R (-1R ·R (𝐵 ·R 𝑓))), ((𝐵 ·R 𝑢) +R (𝐴 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
189, 17sylan9eq 2784 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩ = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
19 df-mul 11080 . . 3 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
20 df-c 11074 . . . . . . 7 ℂ = (R × R)
2120eleq2i 2820 . . . . . 6 (𝑥 ∈ ℂ ↔ 𝑥 ∈ (R × R))
2220eleq2i 2820 . . . . . 6 (𝑦 ∈ ℂ ↔ 𝑦 ∈ (R × R))
2321, 22anbi12i 628 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ↔ (𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)))
2423anbi1i 624 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)) ↔ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩)))
2524oprabbii 7456 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
2619, 25eqtri 2752 . 2 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (R × R) ∧ 𝑦 ∈ (R × R)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
271, 18, 26ov3 7552 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4595   × cxp 5636  (class class class)co 7387  {coprab 7388  Rcnr 10818  -1Rcm1r 10821   +R cplr 10822   ·R cmr 10823  cc 11066   · cmul 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-c 11074  df-mul 11080
This theorem is referenced by:  mulresr  11092  mulcnsrec  11097  axmulf  11099  axi2m1  11112  axcnre  11117
  Copyright terms: Public domain W3C validator