Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ncn | Structured version Visualization version GIF version |
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0ncn | ⊢ ¬ ∅ ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5614 | . 2 ⊢ ¬ ∅ ∈ (R × R) | |
2 | df-c 10808 | . . 3 ⊢ ℂ = (R × R) | |
3 | 2 | eleq2i 2830 | . 2 ⊢ (∅ ∈ ℂ ↔ ∅ ∈ (R × R)) |
4 | 1, 3 | mtbir 322 | 1 ⊢ ¬ ∅ ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∅c0 4253 × cxp 5578 Rcnr 10552 ℂcc 10800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-c 10808 |
This theorem is referenced by: axaddf 10832 axmulf 10833 bj-inftyexpitaudisj 35303 bj-inftyexpidisj 35308 |
Copyright terms: Public domain | W3C validator |