MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ncn Structured version   Visualization version   GIF version

Theorem 0ncn 11124
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
0ncn ¬ ∅ ∈ ℂ

Proof of Theorem 0ncn
StepHypRef Expression
1 0nelxp 5709 . 2 ¬ ∅ ∈ (R × R)
2 df-c 11112 . . 3 ℂ = (R × R)
32eleq2i 2825 . 2 (∅ ∈ ℂ ↔ ∅ ∈ (R × R))
41, 3mtbir 322 1 ¬ ∅ ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  c0 4321   × cxp 5673  Rcnr 10856  cc 11104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-opab 5210  df-xp 5681  df-c 11112
This theorem is referenced by:  axaddf  11136  axmulf  11137  bj-inftyexpitaudisj  36074  bj-inftyexpidisj  36079
  Copyright terms: Public domain W3C validator