MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ncn Structured version   Visualization version   GIF version

Theorem 0ncn 11062
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
0ncn ¬ ∅ ∈ ℂ

Proof of Theorem 0ncn
StepHypRef Expression
1 0nelxp 5665 . 2 ¬ ∅ ∈ (R × R)
2 df-c 11050 . . 3 ℂ = (R × R)
32eleq2i 2820 . 2 (∅ ∈ ℂ ↔ ∅ ∈ (R × R))
41, 3mtbir 323 1 ¬ ∅ ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  c0 4292   × cxp 5629  Rcnr 10794  cc 11042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165  df-xp 5637  df-c 11050
This theorem is referenced by:  axaddf  11074  axmulf  11075  bj-inftyexpitaudisj  37166  bj-inftyexpidisj  37171
  Copyright terms: Public domain W3C validator