![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ncn | Structured version Visualization version GIF version |
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0ncn | ⊢ ¬ ∅ ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5706 | . 2 ⊢ ¬ ∅ ∈ (R × R) | |
2 | df-c 11138 | . . 3 ⊢ ℂ = (R × R) | |
3 | 2 | eleq2i 2821 | . 2 ⊢ (∅ ∈ ℂ ↔ ∅ ∈ (R × R)) |
4 | 1, 3 | mtbir 323 | 1 ⊢ ¬ ∅ ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2099 ∅c0 4318 × cxp 5670 Rcnr 10882 ℂcc 11130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5205 df-xp 5678 df-c 11138 |
This theorem is referenced by: axaddf 11162 axmulf 11163 bj-inftyexpitaudisj 36678 bj-inftyexpidisj 36683 |
Copyright terms: Public domain | W3C validator |