![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ncn | Structured version Visualization version GIF version |
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0ncn | ⊢ ¬ ∅ ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5709 | . 2 ⊢ ¬ ∅ ∈ (R × R) | |
2 | df-c 11112 | . . 3 ⊢ ℂ = (R × R) | |
3 | 2 | eleq2i 2825 | . 2 ⊢ (∅ ∈ ℂ ↔ ∅ ∈ (R × R)) |
4 | 1, 3 | mtbir 322 | 1 ⊢ ¬ ∅ ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ∅c0 4321 × cxp 5673 Rcnr 10856 ℂcc 11104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-opab 5210 df-xp 5681 df-c 11112 |
This theorem is referenced by: axaddf 11136 axmulf 11137 bj-inftyexpitaudisj 36074 bj-inftyexpidisj 36079 |
Copyright terms: Public domain | W3C validator |