MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ncn Structured version   Visualization version   GIF version

Theorem 0ncn 10290
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
0ncn ¬ ∅ ∈ ℂ

Proof of Theorem 0ncn
StepHypRef Expression
1 0nelxp 5389 . 2 ¬ ∅ ∈ (R × R)
2 df-c 10278 . . 3 ℂ = (R × R)
32eleq2i 2850 . 2 (∅ ∈ ℂ ↔ ∅ ∈ (R × R))
41, 3mtbir 315 1 ¬ ∅ ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  c0 4140   × cxp 5353  Rcnr 10022  cc 10270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-opab 4949  df-xp 5361  df-c 10278
This theorem is referenced by:  axaddf  10302  axmulf  10303  bj-inftyexpitaudisj  33696  bj-inftyexpidisj  33701
  Copyright terms: Public domain W3C validator