| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ncn | Structured version Visualization version GIF version | ||
| Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0ncn | ⊢ ¬ ∅ ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5672 | . 2 ⊢ ¬ ∅ ∈ (R × R) | |
| 2 | df-c 11074 | . . 3 ⊢ ℂ = (R × R) | |
| 3 | 2 | eleq2i 2820 | . 2 ⊢ (∅ ∈ ℂ ↔ ∅ ∈ (R × R)) |
| 4 | 1, 3 | mtbir 323 | 1 ⊢ ¬ ∅ ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∅c0 4296 × cxp 5636 Rcnr 10818 ℂcc 11066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 df-xp 5644 df-c 11074 |
| This theorem is referenced by: axaddf 11098 axmulf 11099 bj-inftyexpitaudisj 37193 bj-inftyexpidisj 37198 |
| Copyright terms: Public domain | W3C validator |