MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ncn Structured version   Visualization version   GIF version

Theorem 0ncn 11019
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
0ncn ¬ ∅ ∈ ℂ

Proof of Theorem 0ncn
StepHypRef Expression
1 0nelxp 5645 . 2 ¬ ∅ ∈ (R × R)
2 df-c 11007 . . 3 ℂ = (R × R)
32eleq2i 2823 . 2 (∅ ∈ ℂ ↔ ∅ ∈ (R × R))
41, 3mtbir 323 1 ¬ ∅ ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2111  c0 4278   × cxp 5609  Rcnr 10751  cc 10999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-opab 5149  df-xp 5617  df-c 11007
This theorem is referenced by:  axaddf  11031  axmulf  11032  bj-inftyexpitaudisj  37239  bj-inftyexpidisj  37244
  Copyright terms: Public domain W3C validator