| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ncn | Structured version Visualization version GIF version | ||
| Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0ncn | ⊢ ¬ ∅ ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5645 | . 2 ⊢ ¬ ∅ ∈ (R × R) | |
| 2 | df-c 11007 | . . 3 ⊢ ℂ = (R × R) | |
| 3 | 2 | eleq2i 2823 | . 2 ⊢ (∅ ∈ ℂ ↔ ∅ ∈ (R × R)) |
| 4 | 1, 3 | mtbir 323 | 1 ⊢ ¬ ∅ ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ∅c0 4278 × cxp 5609 Rcnr 10751 ℂcc 10999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5149 df-xp 5617 df-c 11007 |
| This theorem is referenced by: axaddf 11031 axmulf 11032 bj-inftyexpitaudisj 37239 bj-inftyexpidisj 37244 |
| Copyright terms: Public domain | W3C validator |