MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcnex Structured version   Visualization version   GIF version

Theorem axcnex 11171
Description: The complex numbers form a set. This axiom is redundant in the presence of the other axioms (see cnexALT 13001), but the proof requires the axiom of replacement, while the derivation from the construction here does not. Thus, we can avoid ax-rep 5285 in later theorems by invoking Axiom ax-cnex 11195 instead of cnexALT 13001. Use cnex 11220 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
axcnex ℂ ∈ V

Proof of Theorem axcnex
StepHypRef Expression
1 df-c 11145 . 2 ℂ = (R × R)
2 nrex1 11088 . . 3 R ∈ V
32, 2xpex 7755 . 2 (R × R) ∈ V
41, 3eqeltri 2825 1 ℂ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  Vcvv 3471   × cxp 5676  Rcnr 10889  cc 11137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-omul 8492  df-er 8725  df-ec 8727  df-qs 8731  df-ni 10896  df-pli 10897  df-mi 10898  df-lti 10899  df-plpq 10932  df-mpq 10933  df-ltpq 10934  df-enq 10935  df-nq 10936  df-erq 10937  df-plq 10938  df-mq 10939  df-1nq 10940  df-rq 10941  df-ltnq 10942  df-np 11005  df-plp 11007  df-ltp 11009  df-enr 11079  df-nr 11080  df-c 11145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator