MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcnex Structured version   Visualization version   GIF version

Theorem axcnex 10562
Description: The complex numbers form a set. This axiom is redundant in the presence of the other axioms (see cnexALT 12377), but the proof requires the axiom of replacement, while the derivation from the construction here does not. Thus, we can avoid ax-rep 5157 in later theorems by invoking the axiom ax-cnex 10586 instead of cnexALT 12377. Use cnex 10611 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
axcnex ℂ ∈ V

Proof of Theorem axcnex
StepHypRef Expression
1 df-c 10536 . 2 ℂ = (R × R)
2 nrex1 10479 . . 3 R ∈ V
32, 2xpex 7460 . 2 (R × R) ∈ V
41, 3eqeltri 2889 1 ℂ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2112  Vcvv 3444   × cxp 5521  Rcnr 10280  cc 10528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-omul 8094  df-er 8276  df-ec 8278  df-qs 8282  df-ni 10287  df-pli 10288  df-mi 10289  df-lti 10290  df-plpq 10323  df-mpq 10324  df-ltpq 10325  df-enq 10326  df-nq 10327  df-erq 10328  df-plq 10329  df-mq 10330  df-1nq 10331  df-rq 10332  df-ltnq 10333  df-np 10396  df-plp 10398  df-ltp 10400  df-enr 10470  df-nr 10471  df-c 10536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator