![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axcnex | Structured version Visualization version GIF version |
Description: The complex numbers form a set. This axiom is redundant in the presence of the other axioms (see cnexALT 13026), but the proof requires the axiom of replacement, while the derivation from the construction here does not. Thus, we can avoid ax-rep 5285 in later theorems by invoking Axiom ax-cnex 11209 instead of cnexALT 13026. Use cnex 11234 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axcnex | ⊢ ℂ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 11159 | . 2 ⊢ ℂ = (R × R) | |
2 | nrex1 11102 | . . 3 ⊢ R ∈ V | |
3 | 2, 2 | xpex 7772 | . 2 ⊢ (R × R) ∈ V |
4 | 1, 3 | eqeltri 2835 | 1 ⊢ ℂ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 × cxp 5687 Rcnr 10903 ℂcc 11151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-omul 8510 df-er 8744 df-ec 8746 df-qs 8750 df-ni 10910 df-pli 10911 df-mi 10912 df-lti 10913 df-plpq 10946 df-mpq 10947 df-ltpq 10948 df-enq 10949 df-nq 10950 df-erq 10951 df-plq 10952 df-mq 10953 df-1nq 10954 df-rq 10955 df-ltnq 10956 df-np 11019 df-plp 11021 df-ltp 11023 df-enr 11093 df-nr 11094 df-c 11159 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |