MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcnex Structured version   Visualization version   GIF version

Theorem axcnex 11090
Description: The complex numbers form a set. This axiom is redundant in the presence of the other axioms (see cnexALT 12918), but the proof requires the axiom of replacement, while the derivation from the construction here does not. Thus, we can avoid ax-rep 5247 in later theorems by invoking Axiom ax-cnex 11114 instead of cnexALT 12918. Use cnex 11139 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
axcnex ℂ ∈ V

Proof of Theorem axcnex
StepHypRef Expression
1 df-c 11064 . 2 ℂ = (R × R)
2 nrex1 11007 . . 3 R ∈ V
32, 2xpex 7692 . 2 (R × R) ∈ V
41, 3eqeltri 2834 1 ℂ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3448   × cxp 5636  Rcnr 10808  cc 11056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-omul 8422  df-er 8655  df-ec 8657  df-qs 8661  df-ni 10815  df-pli 10816  df-mi 10817  df-lti 10818  df-plpq 10851  df-mpq 10852  df-ltpq 10853  df-enq 10854  df-nq 10855  df-erq 10856  df-plq 10857  df-mq 10858  df-1nq 10859  df-rq 10860  df-ltnq 10861  df-np 10924  df-plp 10926  df-ltp 10928  df-enr 10998  df-nr 10999  df-c 11064
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator