![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axcnex | Structured version Visualization version GIF version |
Description: The complex numbers form a set. This axiom is redundant in the presence of the other axioms (see cnexALT 12971), but the proof requires the axiom of replacement, while the derivation from the construction here does not. Thus, we can avoid ax-rep 5278 in later theorems by invoking Axiom ax-cnex 11165 instead of cnexALT 12971. Use cnex 11190 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axcnex | ⊢ ℂ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 11115 | . 2 ⊢ ℂ = (R × R) | |
2 | nrex1 11058 | . . 3 ⊢ R ∈ V | |
3 | 2, 2 | xpex 7736 | . 2 ⊢ (R × R) ∈ V |
4 | 1, 3 | eqeltri 2823 | 1 ⊢ ℂ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3468 × cxp 5667 Rcnr 10859 ℂcc 11107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-oadd 8468 df-omul 8469 df-er 8702 df-ec 8704 df-qs 8708 df-ni 10866 df-pli 10867 df-mi 10868 df-lti 10869 df-plpq 10902 df-mpq 10903 df-ltpq 10904 df-enq 10905 df-nq 10906 df-erq 10907 df-plq 10908 df-mq 10909 df-1nq 10910 df-rq 10911 df-ltnq 10912 df-np 10975 df-plp 10977 df-ltp 10979 df-enr 11049 df-nr 11050 df-c 11115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |