Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isacycgr1 Structured version   Visualization version   GIF version

Theorem isacycgr1 33008
Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.)
Assertion
Ref Expression
isacycgr1 (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝑊(𝑓,𝑝)

Proof of Theorem isacycgr1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . 5 (𝑔 = 𝐺 → (Cycles‘𝑔) = (Cycles‘𝐺))
21breqd 5081 . . . 4 (𝑔 = 𝐺 → (𝑓(Cycles‘𝑔)𝑝𝑓(Cycles‘𝐺)𝑝))
32imbi1d 341 . . 3 (𝑔 = 𝐺 → ((𝑓(Cycles‘𝑔)𝑝𝑓 = ∅) ↔ (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
432albidv 1927 . 2 (𝑔 = 𝐺 → (∀𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 = ∅) ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
5 dfacycgr1 33006 . 2 AcyclicGraph = {𝑔 ∣ ∀𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 = ∅)}
64, 5elab2g 3604 1 (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108  c0 4253   class class class wbr 5070  cfv 6418  Cyclesccycls 28054  AcyclicGraphcacycgr 33004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-acycgr 33005
This theorem is referenced by:  acycgrcycl  33009  acycgr1v  33011
  Copyright terms: Public domain W3C validator