![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isacycgr1 | Structured version Visualization version GIF version |
Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
Ref | Expression |
---|---|
isacycgr1 | β’ (πΊ β π β (πΊ β AcyclicGraph β βπβπ(π(CyclesβπΊ)π β π = β ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6885 | . . . . 5 β’ (π = πΊ β (Cyclesβπ) = (CyclesβπΊ)) | |
2 | 1 | breqd 5152 | . . . 4 β’ (π = πΊ β (π(Cyclesβπ)π β π(CyclesβπΊ)π)) |
3 | 2 | imbi1d 341 | . . 3 β’ (π = πΊ β ((π(Cyclesβπ)π β π = β ) β (π(CyclesβπΊ)π β π = β ))) |
4 | 3 | 2albidv 1918 | . 2 β’ (π = πΊ β (βπβπ(π(Cyclesβπ)π β π = β ) β βπβπ(π(CyclesβπΊ)π β π = β ))) |
5 | dfacycgr1 34663 | . 2 β’ AcyclicGraph = {π β£ βπβπ(π(Cyclesβπ)π β π = β )} | |
6 | 4, 5 | elab2g 3665 | 1 β’ (πΊ β π β (πΊ β AcyclicGraph β βπβπ(π(CyclesβπΊ)π β π = β ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 βwal 1531 = wceq 1533 β wcel 2098 β c0 4317 class class class wbr 5141 βcfv 6537 Cyclesccycls 29551 AcyclicGraphcacycgr 34661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6489 df-fv 6545 df-acycgr 34662 |
This theorem is referenced by: acycgrcycl 34666 acycgr1v 34668 |
Copyright terms: Public domain | W3C validator |