| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isacycgr1 | Structured version Visualization version GIF version | ||
| Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
| Ref | Expression |
|---|---|
| isacycgr1 | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Cycles‘𝑔) = (Cycles‘𝐺)) | |
| 2 | 1 | breqd 5121 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑓(Cycles‘𝑔)𝑝 ↔ 𝑓(Cycles‘𝐺)𝑝)) |
| 3 | 2 | imbi1d 341 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅) ↔ (𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
| 4 | 3 | 2albidv 1923 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅) ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
| 5 | dfacycgr1 35138 | . 2 ⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} | |
| 6 | 4, 5 | elab2g 3650 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∅c0 4299 class class class wbr 5110 ‘cfv 6514 Cyclesccycls 29722 AcyclicGraphcacycgr 35136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-acycgr 35137 |
| This theorem is referenced by: acycgrcycl 35141 acycgr1v 35143 |
| Copyright terms: Public domain | W3C validator |