Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isacycgr1 | Structured version Visualization version GIF version |
Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
Ref | Expression |
---|---|
isacycgr1 | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Cycles‘𝑔) = (Cycles‘𝐺)) | |
2 | 1 | breqd 5081 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑓(Cycles‘𝑔)𝑝 ↔ 𝑓(Cycles‘𝐺)𝑝)) |
3 | 2 | imbi1d 341 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅) ↔ (𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
4 | 3 | 2albidv 1927 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅) ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
5 | dfacycgr1 33006 | . 2 ⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} | |
6 | 4, 5 | elab2g 3604 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 Cyclesccycls 28054 AcyclicGraphcacycgr 33004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-acycgr 33005 |
This theorem is referenced by: acycgrcycl 33009 acycgr1v 33011 |
Copyright terms: Public domain | W3C validator |