Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isacycgr1 Structured version   Visualization version   GIF version

Theorem isacycgr1 35131
Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.)
Assertion
Ref Expression
isacycgr1 (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝑊(𝑓,𝑝)

Proof of Theorem isacycgr1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . 5 (𝑔 = 𝐺 → (Cycles‘𝑔) = (Cycles‘𝐺))
21breqd 5159 . . . 4 (𝑔 = 𝐺 → (𝑓(Cycles‘𝑔)𝑝𝑓(Cycles‘𝐺)𝑝))
32imbi1d 341 . . 3 (𝑔 = 𝐺 → ((𝑓(Cycles‘𝑔)𝑝𝑓 = ∅) ↔ (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
432albidv 1921 . 2 (𝑔 = 𝐺 → (∀𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 = ∅) ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
5 dfacycgr1 35129 . 2 AcyclicGraph = {𝑔 ∣ ∀𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 = ∅)}
64, 5elab2g 3683 1 (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2106  c0 4339   class class class wbr 5148  cfv 6563  Cyclesccycls 29818  AcyclicGraphcacycgr 35127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-acycgr 35128
This theorem is referenced by:  acycgrcycl  35132  acycgr1v  35134
  Copyright terms: Public domain W3C validator