Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isacycgr1 Structured version   Visualization version   GIF version

Theorem isacycgr1 32506
Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.)
Assertion
Ref Expression
isacycgr1 (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝑊(𝑓,𝑝)

Proof of Theorem isacycgr1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . 5 (𝑔 = 𝐺 → (Cycles‘𝑔) = (Cycles‘𝐺))
21breqd 5041 . . . 4 (𝑔 = 𝐺 → (𝑓(Cycles‘𝑔)𝑝𝑓(Cycles‘𝐺)𝑝))
32imbi1d 345 . . 3 (𝑔 = 𝐺 → ((𝑓(Cycles‘𝑔)𝑝𝑓 = ∅) ↔ (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
432albidv 1924 . 2 (𝑔 = 𝐺 → (∀𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 = ∅) ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
5 dfacycgr1 32504 . 2 AcyclicGraph = {𝑔 ∣ ∀𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 = ∅)}
64, 5elab2g 3616 1 (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536   = wceq 1538  wcel 2111  c0 4243   class class class wbr 5030  cfv 6324  Cyclesccycls 27574  AcyclicGraphcacycgr 32502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-acycgr 32503
This theorem is referenced by:  acycgrcycl  32507  acycgr1v  32509
  Copyright terms: Public domain W3C validator