Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatprc | Structured version Visualization version GIF version |
Description: A function is not defined at a proper class. (Contributed by AV, 1-Sep-2022.) |
Ref | Expression |
---|---|
dfatprc | ⊢ (¬ 𝐴 ∈ V → ¬ 𝐹 defAt 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcnel 3445 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ dom 𝐹) | |
2 | 1 | orcd 869 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) |
3 | ianor 978 | . . 3 ⊢ (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) | |
4 | df-dfat 44498 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
5 | 3, 4 | xchnxbir 332 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) |
6 | 2, 5 | sylibr 233 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐹 defAt 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∈ wcel 2108 Vcvv 3422 {csn 4558 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 defAt wdfat 44495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dfat 44498 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |