![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatprc | Structured version Visualization version GIF version |
Description: A function is not defined at a proper class. (Contributed by AV, 1-Sep-2022.) |
Ref | Expression |
---|---|
dfatprc | ⊢ (¬ 𝐴 ∈ V → ¬ 𝐹 defAt 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcnel 3406 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ∈ dom 𝐹) | |
2 | 1 | orcd 900 | . 2 ⊢ (¬ 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) |
3 | ianor 1005 | . . 3 ⊢ (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) | |
4 | df-dfat 41973 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
5 | 3, 4 | xchnxbir 325 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) |
6 | 2, 5 | sylibr 226 | 1 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐹 defAt 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∨ wo 874 ∈ wcel 2157 Vcvv 3385 {csn 4368 dom cdm 5312 ↾ cres 5314 Fun wfun 6095 defAt wdfat 41970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-v 3387 df-dfat 41973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |