Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatprc Structured version   Visualization version   GIF version

Theorem dfatprc 47045
Description: A function is not defined at a proper class. (Contributed by AV, 1-Sep-2022.)
Assertion
Ref Expression
dfatprc 𝐴 ∈ V → ¬ 𝐹 defAt 𝐴)

Proof of Theorem dfatprc
StepHypRef Expression
1 prcnel 3515 . . 3 𝐴 ∈ V → ¬ 𝐴 ∈ dom 𝐹)
21orcd 872 . 2 𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
3 ianor 982 . . 3 (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
4 df-dfat 47034 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
53, 4xchnxbir 333 . 2 𝐹 defAt 𝐴 ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
62, 5sylibr 234 1 𝐴 ∈ V → ¬ 𝐹 defAt 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  wcel 2108  Vcvv 3488  {csn 4648  dom cdm 5700  cres 5702  Fun wfun 6567   defAt wdfat 47031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dfat 47034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator