![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dfat | Structured version Visualization version GIF version |
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
df-dfat | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cF | . . 3 class 𝐹 | |
3 | 1, 2 | wdfat 45814 | . 2 wff 𝐹 defAt 𝐴 |
4 | 2 | cdm 5676 | . . . 4 class dom 𝐹 |
5 | 1, 4 | wcel 2106 | . . 3 wff 𝐴 ∈ dom 𝐹 |
6 | 1 | csn 4628 | . . . . 5 class {𝐴} |
7 | 2, 6 | cres 5678 | . . . 4 class (𝐹 ↾ {𝐴}) |
8 | 7 | wfun 6537 | . . 3 wff Fun (𝐹 ↾ {𝐴}) |
9 | 5, 8 | wa 396 | . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
10 | 3, 9 | wb 205 | 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Colors of variables: wff setvar class |
This definition is referenced by: dfateq12d 45824 nfdfat 45825 dfdfat2 45826 fundmdfat 45827 dfatprc 45828 dfatelrn 45829 ndmafv 45838 nfunsnafv 45840 afvpcfv0 45844 afvfvn0fveq 45848 afv0nbfvbi 45849 fnbrafvb 45852 afvelrn 45866 afvres 45870 tz6.12-afv 45871 dmfcoafv 45873 afvco2 45874 aovmpt4g 45899 ndmafv2nrn 45920 funressndmafv2rn 45921 nfunsnafv2 45923 dmafv2rnb 45927 afv2res 45937 tz6.12-afv2 45938 dfatbrafv2b 45943 dfatdmfcoafv2 45952 dfatcolem 45953 dfatco 45954 afv2ndeffv0 45958 afv2fvn0fveq 45962 |
Copyright terms: Public domain | W3C validator |