| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dfat | Structured version Visualization version GIF version | ||
| Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| df-dfat | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cF | . . 3 class 𝐹 | |
| 3 | 1, 2 | wdfat 47117 | . 2 wff 𝐹 defAt 𝐴 |
| 4 | 2 | cdm 5638 | . . . 4 class dom 𝐹 |
| 5 | 1, 4 | wcel 2109 | . . 3 wff 𝐴 ∈ dom 𝐹 |
| 6 | 1 | csn 4589 | . . . . 5 class {𝐴} |
| 7 | 2, 6 | cres 5640 | . . . 4 class (𝐹 ↾ {𝐴}) |
| 8 | 7 | wfun 6505 | . . 3 wff Fun (𝐹 ↾ {𝐴}) |
| 9 | 5, 8 | wa 395 | . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
| 10 | 3, 9 | wb 206 | 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfateq12d 47127 nfdfat 47128 dfdfat2 47129 fundmdfat 47130 dfatprc 47131 dfatelrn 47132 ndmafv 47141 nfunsnafv 47143 afvpcfv0 47147 afvfvn0fveq 47151 afv0nbfvbi 47152 fnbrafvb 47155 afvelrn 47169 afvres 47173 tz6.12-afv 47174 dmfcoafv 47176 afvco2 47177 aovmpt4g 47202 ndmafv2nrn 47223 funressndmafv2rn 47224 nfunsnafv2 47226 dmafv2rnb 47230 afv2res 47240 tz6.12-afv2 47241 dfatbrafv2b 47246 dfatdmfcoafv2 47255 dfatcolem 47256 dfatco 47257 afv2ndeffv0 47261 afv2fvn0fveq 47265 |
| Copyright terms: Public domain | W3C validator |