Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dfat | Structured version Visualization version GIF version |
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
df-dfat | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cF | . . 3 class 𝐹 | |
3 | 1, 2 | wdfat 44495 | . 2 wff 𝐹 defAt 𝐴 |
4 | 2 | cdm 5580 | . . . 4 class dom 𝐹 |
5 | 1, 4 | wcel 2108 | . . 3 wff 𝐴 ∈ dom 𝐹 |
6 | 1 | csn 4558 | . . . . 5 class {𝐴} |
7 | 2, 6 | cres 5582 | . . . 4 class (𝐹 ↾ {𝐴}) |
8 | 7 | wfun 6412 | . . 3 wff Fun (𝐹 ↾ {𝐴}) |
9 | 5, 8 | wa 395 | . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
10 | 3, 9 | wb 205 | 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Colors of variables: wff setvar class |
This definition is referenced by: dfateq12d 44505 nfdfat 44506 dfdfat2 44507 fundmdfat 44508 dfatprc 44509 dfatelrn 44510 ndmafv 44519 nfunsnafv 44521 afvpcfv0 44525 afvfvn0fveq 44529 afv0nbfvbi 44530 fnbrafvb 44533 afvelrn 44547 afvres 44551 tz6.12-afv 44552 dmfcoafv 44554 afvco2 44555 aovmpt4g 44580 ndmafv2nrn 44601 funressndmafv2rn 44602 nfunsnafv2 44604 dmafv2rnb 44608 afv2res 44618 tz6.12-afv2 44619 dfatbrafv2b 44624 dfatdmfcoafv2 44633 dfatcolem 44634 dfatco 44635 afv2ndeffv0 44639 afv2fvn0fveq 44643 |
Copyright terms: Public domain | W3C validator |