| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dfat | Structured version Visualization version GIF version | ||
| Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| df-dfat | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cF | . . 3 class 𝐹 | |
| 3 | 1, 2 | wdfat 47121 | . 2 wff 𝐹 defAt 𝐴 |
| 4 | 2 | cdm 5641 | . . . 4 class dom 𝐹 |
| 5 | 1, 4 | wcel 2109 | . . 3 wff 𝐴 ∈ dom 𝐹 |
| 6 | 1 | csn 4592 | . . . . 5 class {𝐴} |
| 7 | 2, 6 | cres 5643 | . . . 4 class (𝐹 ↾ {𝐴}) |
| 8 | 7 | wfun 6508 | . . 3 wff Fun (𝐹 ↾ {𝐴}) |
| 9 | 5, 8 | wa 395 | . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
| 10 | 3, 9 | wb 206 | 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfateq12d 47131 nfdfat 47132 dfdfat2 47133 fundmdfat 47134 dfatprc 47135 dfatelrn 47136 ndmafv 47145 nfunsnafv 47147 afvpcfv0 47151 afvfvn0fveq 47155 afv0nbfvbi 47156 fnbrafvb 47159 afvelrn 47173 afvres 47177 tz6.12-afv 47178 dmfcoafv 47180 afvco2 47181 aovmpt4g 47206 ndmafv2nrn 47227 funressndmafv2rn 47228 nfunsnafv2 47230 dmafv2rnb 47234 afv2res 47244 tz6.12-afv2 47245 dfatbrafv2b 47250 dfatdmfcoafv2 47259 dfatcolem 47260 dfatco 47261 afv2ndeffv0 47265 afv2fvn0fveq 47269 |
| Copyright terms: Public domain | W3C validator |