Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-dfat Structured version   Visualization version   GIF version

Definition df-dfat 44283
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
df-dfat (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))

Detailed syntax breakdown of Definition df-dfat
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2wdfat 44280 . 2 wff 𝐹 defAt 𝐴
42cdm 5551 . . . 4 class dom 𝐹
51, 4wcel 2110 . . 3 wff 𝐴 ∈ dom 𝐹
61csn 4541 . . . . 5 class {𝐴}
72, 6cres 5553 . . . 4 class (𝐹 ↾ {𝐴})
87wfun 6374 . . 3 wff Fun (𝐹 ↾ {𝐴})
95, 8wa 399 . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
103, 9wb 209 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
Colors of variables: wff setvar class
This definition is referenced by:  dfateq12d  44290  nfdfat  44291  dfdfat2  44292  fundmdfat  44293  dfatprc  44294  dfatelrn  44295  ndmafv  44304  nfunsnafv  44306  afvpcfv0  44310  afvfvn0fveq  44314  afv0nbfvbi  44315  fnbrafvb  44318  afvelrn  44332  afvres  44336  tz6.12-afv  44337  dmfcoafv  44339  afvco2  44340  aovmpt4g  44365  ndmafv2nrn  44386  funressndmafv2rn  44387  nfunsnafv2  44389  dmafv2rnb  44393  afv2res  44403  tz6.12-afv2  44404  dfatbrafv2b  44409  dfatdmfcoafv2  44418  dfatcolem  44419  dfatco  44420  afv2ndeffv0  44424  afv2fvn0fveq  44428
  Copyright terms: Public domain W3C validator