![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dfat | Structured version Visualization version GIF version |
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
df-dfat | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cF | . . 3 class 𝐹 | |
3 | 1, 2 | wdfat 42831 | . 2 wff 𝐹 defAt 𝐴 |
4 | 2 | cdm 5443 | . . . 4 class dom 𝐹 |
5 | 1, 4 | wcel 2081 | . . 3 wff 𝐴 ∈ dom 𝐹 |
6 | 1 | csn 4472 | . . . . 5 class {𝐴} |
7 | 2, 6 | cres 5445 | . . . 4 class (𝐹 ↾ {𝐴}) |
8 | 7 | wfun 6219 | . . 3 wff Fun (𝐹 ↾ {𝐴}) |
9 | 5, 8 | wa 396 | . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
10 | 3, 9 | wb 207 | 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Colors of variables: wff setvar class |
This definition is referenced by: dfateq12d 42841 nfdfat 42842 dfdfat2 42843 fundmdfat 42844 dfatprc 42845 dfatelrn 42846 ndmafv 42855 nfunsnafv 42857 afvpcfv0 42861 afvfvn0fveq 42865 afv0nbfvbi 42866 fnbrafvb 42869 afvelrn 42883 afvres 42887 tz6.12-afv 42888 dmfcoafv 42890 afvco2 42891 aovmpt4g 42916 ndmafv2nrn 42937 funressndmafv2rn 42938 nfunsnafv2 42940 dmafv2rnb 42944 afv2res 42954 tz6.12-afv2 42955 dfatbrafv2b 42960 dfatdmfcoafv2 42969 dfatcolem 42970 dfatco 42971 afv2ndeffv0 42975 afv2fvn0fveq 42979 |
Copyright terms: Public domain | W3C validator |