![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dfat | Structured version Visualization version GIF version |
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
df-dfat | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cF | . . 3 class 𝐹 | |
3 | 1, 2 | wdfat 47031 | . 2 wff 𝐹 defAt 𝐴 |
4 | 2 | cdm 5700 | . . . 4 class dom 𝐹 |
5 | 1, 4 | wcel 2108 | . . 3 wff 𝐴 ∈ dom 𝐹 |
6 | 1 | csn 4648 | . . . . 5 class {𝐴} |
7 | 2, 6 | cres 5702 | . . . 4 class (𝐹 ↾ {𝐴}) |
8 | 7 | wfun 6567 | . . 3 wff Fun (𝐹 ↾ {𝐴}) |
9 | 5, 8 | wa 395 | . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
10 | 3, 9 | wb 206 | 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Colors of variables: wff setvar class |
This definition is referenced by: dfateq12d 47041 nfdfat 47042 dfdfat2 47043 fundmdfat 47044 dfatprc 47045 dfatelrn 47046 ndmafv 47055 nfunsnafv 47057 afvpcfv0 47061 afvfvn0fveq 47065 afv0nbfvbi 47066 fnbrafvb 47069 afvelrn 47083 afvres 47087 tz6.12-afv 47088 dmfcoafv 47090 afvco2 47091 aovmpt4g 47116 ndmafv2nrn 47137 funressndmafv2rn 47138 nfunsnafv2 47140 dmafv2rnb 47144 afv2res 47154 tz6.12-afv2 47155 dfatbrafv2b 47160 dfatdmfcoafv2 47169 dfatcolem 47170 dfatco 47171 afv2ndeffv0 47175 afv2fvn0fveq 47179 |
Copyright terms: Public domain | W3C validator |