Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-dfat Structured version   Visualization version   GIF version

Definition df-dfat 44498
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
df-dfat (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))

Detailed syntax breakdown of Definition df-dfat
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2wdfat 44495 . 2 wff 𝐹 defAt 𝐴
42cdm 5580 . . . 4 class dom 𝐹
51, 4wcel 2108 . . 3 wff 𝐴 ∈ dom 𝐹
61csn 4558 . . . . 5 class {𝐴}
72, 6cres 5582 . . . 4 class (𝐹 ↾ {𝐴})
87wfun 6412 . . 3 wff Fun (𝐹 ↾ {𝐴})
95, 8wa 395 . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
103, 9wb 205 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
Colors of variables: wff setvar class
This definition is referenced by:  dfateq12d  44505  nfdfat  44506  dfdfat2  44507  fundmdfat  44508  dfatprc  44509  dfatelrn  44510  ndmafv  44519  nfunsnafv  44521  afvpcfv0  44525  afvfvn0fveq  44529  afv0nbfvbi  44530  fnbrafvb  44533  afvelrn  44547  afvres  44551  tz6.12-afv  44552  dmfcoafv  44554  afvco2  44555  aovmpt4g  44580  ndmafv2nrn  44601  funressndmafv2rn  44602  nfunsnafv2  44604  dmafv2rnb  44608  afv2res  44618  tz6.12-afv2  44619  dfatbrafv2b  44624  dfatdmfcoafv2  44633  dfatcolem  44634  dfatco  44635  afv2ndeffv0  44639  afv2fvn0fveq  44643
  Copyright terms: Public domain W3C validator