Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-dfat Structured version   Visualization version   GIF version

Definition df-dfat 47069
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
df-dfat (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))

Detailed syntax breakdown of Definition df-dfat
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2wdfat 47066 . 2 wff 𝐹 defAt 𝐴
42cdm 5689 . . . 4 class dom 𝐹
51, 4wcel 2106 . . 3 wff 𝐴 ∈ dom 𝐹
61csn 4631 . . . . 5 class {𝐴}
72, 6cres 5691 . . . 4 class (𝐹 ↾ {𝐴})
87wfun 6557 . . 3 wff Fun (𝐹 ↾ {𝐴})
95, 8wa 395 . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
103, 9wb 206 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
Colors of variables: wff setvar class
This definition is referenced by:  dfateq12d  47076  nfdfat  47077  dfdfat2  47078  fundmdfat  47079  dfatprc  47080  dfatelrn  47081  ndmafv  47090  nfunsnafv  47092  afvpcfv0  47096  afvfvn0fveq  47100  afv0nbfvbi  47101  fnbrafvb  47104  afvelrn  47118  afvres  47122  tz6.12-afv  47123  dmfcoafv  47125  afvco2  47126  aovmpt4g  47151  ndmafv2nrn  47172  funressndmafv2rn  47173  nfunsnafv2  47175  dmafv2rnb  47179  afv2res  47189  tz6.12-afv2  47190  dfatbrafv2b  47195  dfatdmfcoafv2  47204  dfatcolem  47205  dfatco  47206  afv2ndeffv0  47210  afv2fvn0fveq  47214
  Copyright terms: Public domain W3C validator