Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-dfat Structured version   Visualization version   GIF version

Definition df-dfat 42834
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
df-dfat (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))

Detailed syntax breakdown of Definition df-dfat
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2wdfat 42831 . 2 wff 𝐹 defAt 𝐴
42cdm 5443 . . . 4 class dom 𝐹
51, 4wcel 2081 . . 3 wff 𝐴 ∈ dom 𝐹
61csn 4472 . . . . 5 class {𝐴}
72, 6cres 5445 . . . 4 class (𝐹 ↾ {𝐴})
87wfun 6219 . . 3 wff Fun (𝐹 ↾ {𝐴})
95, 8wa 396 . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
103, 9wb 207 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
Colors of variables: wff setvar class
This definition is referenced by:  dfateq12d  42841  nfdfat  42842  dfdfat2  42843  fundmdfat  42844  dfatprc  42845  dfatelrn  42846  ndmafv  42855  nfunsnafv  42857  afvpcfv0  42861  afvfvn0fveq  42865  afv0nbfvbi  42866  fnbrafvb  42869  afvelrn  42883  afvres  42887  tz6.12-afv  42888  dmfcoafv  42890  afvco2  42891  aovmpt4g  42916  ndmafv2nrn  42937  funressndmafv2rn  42938  nfunsnafv2  42940  dmafv2rnb  42944  afv2res  42954  tz6.12-afv2  42955  dfatbrafv2b  42960  dfatdmfcoafv2  42969  dfatcolem  42970  dfatco  42971  afv2ndeffv0  42975  afv2fvn0fveq  42979
  Copyright terms: Public domain W3C validator