Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-dfat Structured version   Visualization version   GIF version

Definition df-dfat 47233
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
df-dfat (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))

Detailed syntax breakdown of Definition df-dfat
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2wdfat 47230 . 2 wff 𝐹 defAt 𝐴
42cdm 5621 . . . 4 class dom 𝐹
51, 4wcel 2113 . . 3 wff 𝐴 ∈ dom 𝐹
61csn 4577 . . . . 5 class {𝐴}
72, 6cres 5623 . . . 4 class (𝐹 ↾ {𝐴})
87wfun 6483 . . 3 wff Fun (𝐹 ↾ {𝐴})
95, 8wa 395 . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
103, 9wb 206 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
Colors of variables: wff setvar class
This definition is referenced by:  dfateq12d  47240  nfdfat  47241  dfdfat2  47242  fundmdfat  47243  dfatprc  47244  dfatelrn  47245  ndmafv  47254  nfunsnafv  47256  afvpcfv0  47260  afvfvn0fveq  47264  afv0nbfvbi  47265  fnbrafvb  47268  afvelrn  47282  afvres  47286  tz6.12-afv  47287  dmfcoafv  47289  afvco2  47290  aovmpt4g  47315  ndmafv2nrn  47336  funressndmafv2rn  47337  nfunsnafv2  47339  dmafv2rnb  47343  afv2res  47353  tz6.12-afv2  47354  dfatbrafv2b  47359  dfatdmfcoafv2  47368  dfatcolem  47369  dfatco  47370  afv2ndeffv0  47374  afv2fvn0fveq  47378
  Copyright terms: Public domain W3C validator