![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dfat | Structured version Visualization version GIF version |
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
df-dfat | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cF | . . 3 class 𝐹 | |
3 | 1, 2 | wdfat 46123 | . 2 wff 𝐹 defAt 𝐴 |
4 | 2 | cdm 5676 | . . . 4 class dom 𝐹 |
5 | 1, 4 | wcel 2106 | . . 3 wff 𝐴 ∈ dom 𝐹 |
6 | 1 | csn 4628 | . . . . 5 class {𝐴} |
7 | 2, 6 | cres 5678 | . . . 4 class (𝐹 ↾ {𝐴}) |
8 | 7 | wfun 6537 | . . 3 wff Fun (𝐹 ↾ {𝐴}) |
9 | 5, 8 | wa 396 | . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) |
10 | 3, 9 | wb 205 | 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Colors of variables: wff setvar class |
This definition is referenced by: dfateq12d 46133 nfdfat 46134 dfdfat2 46135 fundmdfat 46136 dfatprc 46137 dfatelrn 46138 ndmafv 46147 nfunsnafv 46149 afvpcfv0 46153 afvfvn0fveq 46157 afv0nbfvbi 46158 fnbrafvb 46161 afvelrn 46175 afvres 46179 tz6.12-afv 46180 dmfcoafv 46182 afvco2 46183 aovmpt4g 46208 ndmafv2nrn 46229 funressndmafv2rn 46230 nfunsnafv2 46232 dmafv2rnb 46236 afv2res 46246 tz6.12-afv2 46247 dfatbrafv2b 46252 dfatdmfcoafv2 46261 dfatcolem 46262 dfatco 46263 afv2ndeffv0 46267 afv2fvn0fveq 46271 |
Copyright terms: Public domain | W3C validator |