Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-dfat Structured version   Visualization version   GIF version

Definition df-dfat 46126
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
df-dfat (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))

Detailed syntax breakdown of Definition df-dfat
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2wdfat 46123 . 2 wff 𝐹 defAt 𝐴
42cdm 5676 . . . 4 class dom 𝐹
51, 4wcel 2106 . . 3 wff 𝐴 ∈ dom 𝐹
61csn 4628 . . . . 5 class {𝐴}
72, 6cres 5678 . . . 4 class (𝐹 ↾ {𝐴})
87wfun 6537 . . 3 wff Fun (𝐹 ↾ {𝐴})
95, 8wa 396 . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
103, 9wb 205 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
Colors of variables: wff setvar class
This definition is referenced by:  dfateq12d  46133  nfdfat  46134  dfdfat2  46135  fundmdfat  46136  dfatprc  46137  dfatelrn  46138  ndmafv  46147  nfunsnafv  46149  afvpcfv0  46153  afvfvn0fveq  46157  afv0nbfvbi  46158  fnbrafvb  46161  afvelrn  46175  afvres  46179  tz6.12-afv  46180  dmfcoafv  46182  afvco2  46183  aovmpt4g  46208  ndmafv2nrn  46229  funressndmafv2rn  46230  nfunsnafv2  46232  dmafv2rnb  46236  afv2res  46246  tz6.12-afv2  46247  dfatbrafv2b  46252  dfatdmfcoafv2  46261  dfatcolem  46262  dfatco  46263  afv2ndeffv0  46267  afv2fvn0fveq  46271
  Copyright terms: Public domain W3C validator