Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-dfat Structured version   Visualization version   GIF version

Definition df-dfat 44622
Description: Definition of the predicate that determines if some class 𝐹 is defined as function for an argument 𝐴 or, in other words, if the function value for some class 𝐹 for an argument 𝐴 is defined. We say that 𝐹 is defined at 𝐴 if a 𝐹 is a function restricted to the member 𝐴 of its domain. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
df-dfat (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))

Detailed syntax breakdown of Definition df-dfat
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2wdfat 44619 . 2 wff 𝐹 defAt 𝐴
42cdm 5590 . . . 4 class dom 𝐹
51, 4wcel 2107 . . 3 wff 𝐴 ∈ dom 𝐹
61csn 4562 . . . . 5 class {𝐴}
72, 6cres 5592 . . . 4 class (𝐹 ↾ {𝐴})
87wfun 6431 . . 3 wff Fun (𝐹 ↾ {𝐴})
95, 8wa 396 . 2 wff (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))
103, 9wb 205 1 wff (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
Colors of variables: wff setvar class
This definition is referenced by:  dfateq12d  44629  nfdfat  44630  dfdfat2  44631  fundmdfat  44632  dfatprc  44633  dfatelrn  44634  ndmafv  44643  nfunsnafv  44645  afvpcfv0  44649  afvfvn0fveq  44653  afv0nbfvbi  44654  fnbrafvb  44657  afvelrn  44671  afvres  44675  tz6.12-afv  44676  dmfcoafv  44678  afvco2  44679  aovmpt4g  44704  ndmafv2nrn  44725  funressndmafv2rn  44726  nfunsnafv2  44728  dmafv2rnb  44732  afv2res  44742  tz6.12-afv2  44743  dfatbrafv2b  44748  dfatdmfcoafv2  44757  dfatcolem  44758  dfatco  44759  afv2ndeffv0  44763  afv2fvn0fveq  44767
  Copyright terms: Public domain W3C validator