Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fundmdfat | Structured version Visualization version GIF version |
Description: A function is defined at any element of its domain. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
fundmdfat | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 6493 | . . 3 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {𝐴})) | |
2 | 1 | anim1ci 615 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
3 | df-dfat 44651 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2101 {csn 4564 dom cdm 5591 ↾ cres 5593 Fun wfun 6441 defAt wdfat 44648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1540 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3436 df-in 3896 df-ss 3906 df-br 5078 df-opab 5140 df-rel 5598 df-cnv 5599 df-co 5600 df-res 5603 df-fun 6449 df-dfat 44651 |
This theorem is referenced by: afv2elrn 44763 fnbrafv2b 44780 |
Copyright terms: Public domain | W3C validator |