Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundmdfat Structured version   Visualization version   GIF version

Theorem fundmdfat 47130
Description: A function is defined at any element of its domain. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
fundmdfat ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴)

Proof of Theorem fundmdfat
StepHypRef Expression
1 funres 6558 . . 3 (Fun 𝐹 → Fun (𝐹 ↾ {𝐴}))
21anim1ci 616 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
3 df-dfat 47120 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
42, 3sylibr 234 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {csn 4589  dom cdm 5638  cres 5640  Fun wfun 6505   defAt wdfat 47117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-in 3921  df-ss 3931  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-res 5650  df-fun 6513  df-dfat 47120
This theorem is referenced by:  afv2elrn  47232  fnbrafv2b  47249
  Copyright terms: Public domain W3C validator