Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundmdfat Structured version   Visualization version   GIF version

Theorem fundmdfat 46135
Description: A function is defined at any element of its domain. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
fundmdfat ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴)

Proof of Theorem fundmdfat
StepHypRef Expression
1 funres 6589 . . 3 (Fun 𝐹 → Fun (𝐹 ↾ {𝐴}))
21anim1ci 614 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
3 df-dfat 46125 . 2 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
42, 3sylibr 233 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2104  {csn 4627  dom cdm 5675  cres 5677  Fun wfun 6536   defAt wdfat 46122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-in 3954  df-ss 3964  df-br 5148  df-opab 5210  df-rel 5682  df-cnv 5683  df-co 5684  df-res 5687  df-fun 6544  df-dfat 46125
This theorem is referenced by:  afv2elrn  46237  fnbrafv2b  46254
  Copyright terms: Public domain W3C validator