Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fundmdfat | Structured version Visualization version GIF version |
Description: A function is defined at any element of its domain. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
fundmdfat | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 6377 | . . 3 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {𝐴})) | |
2 | 1 | anim1ci 618 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
3 | df-dfat 44043 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
4 | 2, 3 | sylibr 237 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 {csn 4522 dom cdm 5524 ↾ cres 5526 Fun wfun 6329 defAt wdfat 44040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 df-br 5033 df-opab 5095 df-rel 5531 df-cnv 5532 df-co 5533 df-res 5536 df-fun 6337 df-dfat 44043 |
This theorem is referenced by: afv2elrn 44155 fnbrafv2b 44172 |
Copyright terms: Public domain | W3C validator |