| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fundmdfat | Structured version Visualization version GIF version | ||
| Description: A function is defined at any element of its domain. (Contributed by AV, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| fundmdfat | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 6560 | . . 3 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {𝐴})) | |
| 2 | 1 | anim1ci 616 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| 3 | df-dfat 47110 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {csn 4591 dom cdm 5640 ↾ cres 5642 Fun wfun 6507 defAt wdfat 47107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3923 df-ss 3933 df-br 5110 df-opab 5172 df-rel 5647 df-cnv 5648 df-co 5649 df-res 5652 df-fun 6515 df-dfat 47110 |
| This theorem is referenced by: afv2elrn 47222 fnbrafv2b 47239 |
| Copyright terms: Public domain | W3C validator |