| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fundmdfat | Structured version Visualization version GIF version | ||
| Description: A function is defined at any element of its domain. (Contributed by AV, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| fundmdfat | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 6530 | . . 3 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ {𝐴})) | |
| 2 | 1 | anim1ci 616 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| 3 | df-dfat 47246 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 {csn 4577 dom cdm 5621 ↾ cres 5623 Fun wfun 6482 defAt wdfat 47243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-res 5633 df-fun 6490 df-dfat 47246 |
| This theorem is referenced by: afv2elrn 47358 fnbrafv2b 47375 |
| Copyright terms: Public domain | W3C validator |