Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelcoss2 Structured version   Visualization version   GIF version

Theorem eqvrelcoss2 37979
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.)
Assertion
Ref Expression
eqvrelcoss2 ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅)

Proof of Theorem eqvrelcoss2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqvrelcoss3 37978 . 2 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2 cocossss 37796 . 2 ( ≀ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
31, 2bitr4i 278 1 ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531  wss 3940   class class class wbr 5138  ccoss 37533   EqvRel weqvrel 37550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-coss 37771  df-refrel 37872  df-symrel 37904  df-trrel 37934  df-eqvrel 37945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator