Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelcoss2 Structured version   Visualization version   GIF version

Theorem eqvrelcoss2 37110
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.)
Assertion
Ref Expression
eqvrelcoss2 ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅)

Proof of Theorem eqvrelcoss2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqvrelcoss3 37109 . 2 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2 cocossss 36927 . 2 ( ≀ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
31, 2bitr4i 278 1 ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540  wss 3915   class class class wbr 5110  ccoss 36663   EqvRel weqvrel 36680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-coss 36902  df-refrel 37003  df-symrel 37035  df-trrel 37065  df-eqvrel 37076
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator