Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelcoss2 Structured version   Visualization version   GIF version

Theorem eqvrelcoss2 36659
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.)
Assertion
Ref Expression
eqvrelcoss2 ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅)

Proof of Theorem eqvrelcoss2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqvrelcoss3 36658 . 2 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2 cocossss 36486 . 2 ( ≀ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
31, 2bitr4i 277 1 ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wss 3883   class class class wbr 5070  ccoss 36260   EqvRel weqvrel 36277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-coss 36464  df-refrel 36557  df-symrel 36585  df-trrel 36615  df-eqvrel 36625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator