Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelcoss4 Structured version   Visualization version   GIF version

Theorem eqvrelcoss4 36356
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 30-Sep-2021.)
Assertion
Ref Expression
eqvrelcoss4 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
Distinct variable group:   𝑥,𝑅,𝑧

Proof of Theorem eqvrelcoss4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqvrelcoss3 36354 . 2 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2 trcoss2 36225 . 2 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
31, 2bitri 278 1 ( EqvRel ≀ 𝑅 ↔ ∀𝑥𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]𝑅 ∩ [𝑧]𝑅) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1540  wne 2934  cin 3842  c0 4211   class class class wbr 5030  ccnv 5524  [cec 8318  ccoss 35956   EqvRel weqvrel 35973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ec 8322  df-coss 36160  df-refrel 36253  df-symrel 36281  df-trrel 36311  df-eqvrel 36321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator