![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjs2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
dfdisjs2 | ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjs 37573 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
2 | cosselcnvrefrels2 37403 | . . 3 ⊢ ( ≀ ◡𝑟 ∈ CnvRefRels ↔ ( ≀ ◡𝑟 ⊆ I ∧ ≀ ◡𝑟 ∈ Rels )) | |
3 | cosscnvelrels 37362 | . . . 4 ⊢ (𝑟 ∈ Rels → ≀ ◡𝑟 ∈ Rels ) | |
4 | 3 | biantrud 532 | . . 3 ⊢ (𝑟 ∈ Rels → ( ≀ ◡𝑟 ⊆ I ↔ ( ≀ ◡𝑟 ⊆ I ∧ ≀ ◡𝑟 ∈ Rels ))) |
5 | 2, 4 | bitr4id 289 | . 2 ⊢ (𝑟 ∈ Rels → ( ≀ ◡𝑟 ∈ CnvRefRels ↔ ≀ ◡𝑟 ⊆ I )) |
6 | 1, 5 | rabimbieq 37114 | 1 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 ⊆ wss 3948 I cid 5573 ◡ccnv 5675 ≀ ccoss 37038 Rels crels 37040 CnvRefRels ccnvrefrels 37046 Disjs cdisjs 37071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-coss 37276 df-rels 37350 df-ssr 37363 df-cnvrefs 37390 df-cnvrefrels 37391 df-disjss 37568 df-disjs 37569 |
This theorem is referenced by: dfdisjs3 37575 dfdisjs4 37576 dfdisjs5 37577 |
Copyright terms: Public domain | W3C validator |