Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjs2 Structured version   Visualization version   GIF version

Theorem dfdisjs2 36463
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
dfdisjs2 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }

Proof of Theorem dfdisjs2
StepHypRef Expression
1 dfdisjs 36462 . 2 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
2 cosselcnvrefrels2 36295 . . 3 ( ≀ 𝑟 ∈ CnvRefRels ↔ ( ≀ 𝑟 ⊆ I ∧ ≀ 𝑟 ∈ Rels ))
3 cosscnvelrels 36258 . . . 4 (𝑟 ∈ Rels → ≀ 𝑟 ∈ Rels )
43biantrud 535 . . 3 (𝑟 ∈ Rels → ( ≀ 𝑟 ⊆ I ↔ ( ≀ 𝑟 ⊆ I ∧ ≀ 𝑟 ∈ Rels )))
52, 4bitr4id 293 . 2 (𝑟 ∈ Rels → ( ≀ 𝑟 ∈ CnvRefRels ↔ ≀ 𝑟 ⊆ I ))
61, 5rabimbieq 36034 1 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wcel 2114  {crab 3057  wss 3843   I cid 5428  ccnv 5524  ccoss 35976   Rels crels 35978   CnvRefRels ccnvrefrels 35984   Disjs cdisjs 36009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-coss 36180  df-rels 36246  df-ssr 36259  df-cnvrefs 36284  df-cnvrefrels 36285  df-disjss 36457  df-disjs 36458
This theorem is referenced by:  dfdisjs3  36464  dfdisjs4  36465  dfdisjs5  36466
  Copyright terms: Public domain W3C validator