![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjs2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
dfdisjs2 | ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjs 38416 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
2 | cosselcnvrefrels2 38246 | . . 3 ⊢ ( ≀ ◡𝑟 ∈ CnvRefRels ↔ ( ≀ ◡𝑟 ⊆ I ∧ ≀ ◡𝑟 ∈ Rels )) | |
3 | cosscnvelrels 38205 | . . . 4 ⊢ (𝑟 ∈ Rels → ≀ ◡𝑟 ∈ Rels ) | |
4 | 3 | biantrud 530 | . . 3 ⊢ (𝑟 ∈ Rels → ( ≀ ◡𝑟 ⊆ I ↔ ( ≀ ◡𝑟 ⊆ I ∧ ≀ ◡𝑟 ∈ Rels ))) |
5 | 2, 4 | bitr4id 289 | . 2 ⊢ (𝑟 ∈ Rels → ( ≀ ◡𝑟 ∈ CnvRefRels ↔ ≀ ◡𝑟 ⊆ I )) |
6 | 1, 5 | rabimbieq 37959 | 1 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 ⊆ wss 3946 I cid 5569 ◡ccnv 5671 ≀ ccoss 37886 Rels crels 37888 CnvRefRels ccnvrefrels 37894 Disjs cdisjs 37919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-coss 38119 df-rels 38193 df-ssr 38206 df-cnvrefs 38233 df-cnvrefrels 38234 df-disjss 38411 df-disjs 38412 |
This theorem is referenced by: dfdisjs3 38418 dfdisjs4 38419 dfdisjs5 38420 |
Copyright terms: Public domain | W3C validator |