Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjs2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
dfdisjs2 | ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjs 36462 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
2 | cosselcnvrefrels2 36295 | . . 3 ⊢ ( ≀ ◡𝑟 ∈ CnvRefRels ↔ ( ≀ ◡𝑟 ⊆ I ∧ ≀ ◡𝑟 ∈ Rels )) | |
3 | cosscnvelrels 36258 | . . . 4 ⊢ (𝑟 ∈ Rels → ≀ ◡𝑟 ∈ Rels ) | |
4 | 3 | biantrud 535 | . . 3 ⊢ (𝑟 ∈ Rels → ( ≀ ◡𝑟 ⊆ I ↔ ( ≀ ◡𝑟 ⊆ I ∧ ≀ ◡𝑟 ∈ Rels ))) |
5 | 2, 4 | bitr4id 293 | . 2 ⊢ (𝑟 ∈ Rels → ( ≀ ◡𝑟 ∈ CnvRefRels ↔ ≀ ◡𝑟 ⊆ I )) |
6 | 1, 5 | rabimbieq 36034 | 1 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∈ wcel 2114 {crab 3057 ⊆ wss 3843 I cid 5428 ◡ccnv 5524 ≀ ccoss 35976 Rels crels 35978 CnvRefRels ccnvrefrels 35984 Disjs cdisjs 36009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-coss 36180 df-rels 36246 df-ssr 36259 df-cnvrefs 36284 df-cnvrefrels 36285 df-disjss 36457 df-disjs 36458 |
This theorem is referenced by: dfdisjs3 36464 dfdisjs4 36465 dfdisjs5 36466 |
Copyright terms: Public domain | W3C validator |