| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjs | Structured version Visualization version GIF version | ||
| Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.) |
| Ref | Expression |
|---|---|
| eldisjs | ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjs 38826 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
| 2 | cnveq 5817 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
| 3 | 2 | cosseqd 38550 | . . 3 ⊢ (𝑟 = 𝑅 → ≀ ◡𝑟 = ≀ ◡𝑅) |
| 4 | 3 | eleq1d 2818 | . 2 ⊢ (𝑟 = 𝑅 → ( ≀ ◡𝑟 ∈ CnvRefRels ↔ ≀ ◡𝑅 ∈ CnvRefRels )) |
| 5 | 1, 4 | rabeqel 38311 | 1 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ◡ccnv 5618 ≀ ccoss 38242 Rels crels 38244 CnvRefRels ccnvrefrels 38250 Disjs cdisjs 38275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 df-br 5094 df-opab 5156 df-cnv 5627 df-coss 38533 df-disjss 38821 df-disjs 38822 |
| This theorem is referenced by: eldisjs2 38841 eldisjsdisj 38845 |
| Copyright terms: Public domain | W3C validator |