Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjs Structured version   Visualization version   GIF version

Theorem eldisjs 36760
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.)
Assertion
Ref Expression
eldisjs (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))

Proof of Theorem eldisjs
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfdisjs 36746 . 2 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
2 cnveq 5771 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
32cosseqd 36478 . . 3 (𝑟 = 𝑅 → ≀ 𝑟 = ≀ 𝑅)
43eleq1d 2823 . 2 (𝑟 = 𝑅 → ( ≀ 𝑟 ∈ CnvRefRels ↔ ≀ 𝑅 ∈ CnvRefRels ))
51, 4rabeqel 36321 1 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  ccnv 5579  ccoss 36260   Rels crels 36262   CnvRefRels ccnvrefrels 36268   Disjs cdisjs 36293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-opab 5133  df-cnv 5588  df-coss 36464  df-disjss 36741  df-disjs 36742
This theorem is referenced by:  eldisjs2  36761  eldisjsdisj  36765
  Copyright terms: Public domain W3C validator