Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjs | Structured version Visualization version GIF version |
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.) |
Ref | Expression |
---|---|
eldisjs | ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjs 36746 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
2 | cnveq 5771 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
3 | 2 | cosseqd 36478 | . . 3 ⊢ (𝑟 = 𝑅 → ≀ ◡𝑟 = ≀ ◡𝑅) |
4 | 3 | eleq1d 2823 | . 2 ⊢ (𝑟 = 𝑅 → ( ≀ ◡𝑟 ∈ CnvRefRels ↔ ≀ ◡𝑅 ∈ CnvRefRels )) |
5 | 1, 4 | rabeqel 36321 | 1 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ◡ccnv 5579 ≀ ccoss 36260 Rels crels 36262 CnvRefRels ccnvrefrels 36268 Disjs cdisjs 36293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-cnv 5588 df-coss 36464 df-disjss 36741 df-disjs 36742 |
This theorem is referenced by: eldisjs2 36761 eldisjsdisj 36765 |
Copyright terms: Public domain | W3C validator |