| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjs | Structured version Visualization version GIF version | ||
| Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.) |
| Ref | Expression |
|---|---|
| eldisjs | ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjs 38707 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
| 2 | cnveq 5840 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
| 3 | 2 | cosseqd 38426 | . . 3 ⊢ (𝑟 = 𝑅 → ≀ ◡𝑟 = ≀ ◡𝑅) |
| 4 | 3 | eleq1d 2814 | . 2 ⊢ (𝑟 = 𝑅 → ( ≀ ◡𝑟 ∈ CnvRefRels ↔ ≀ ◡𝑅 ∈ CnvRefRels )) |
| 5 | 1, 4 | rabeqel 38250 | 1 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ◡ccnv 5640 ≀ ccoss 38176 Rels crels 38178 CnvRefRels ccnvrefrels 38184 Disjs cdisjs 38209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-br 5111 df-opab 5173 df-cnv 5649 df-coss 38409 df-disjss 38702 df-disjs 38703 |
| This theorem is referenced by: eldisjs2 38722 eldisjsdisj 38726 |
| Copyright terms: Public domain | W3C validator |