Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjs | Structured version Visualization version GIF version |
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.) |
Ref | Expression |
---|---|
eldisjs | ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjs 36819 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
2 | cnveq 5782 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
3 | 2 | cosseqd 36551 | . . 3 ⊢ (𝑟 = 𝑅 → ≀ ◡𝑟 = ≀ ◡𝑅) |
4 | 3 | eleq1d 2823 | . 2 ⊢ (𝑟 = 𝑅 → ( ≀ ◡𝑟 ∈ CnvRefRels ↔ ≀ ◡𝑅 ∈ CnvRefRels )) |
5 | 1, 4 | rabeqel 36394 | 1 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ◡ccnv 5588 ≀ ccoss 36333 Rels crels 36335 CnvRefRels ccnvrefrels 36341 Disjs cdisjs 36366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 df-opab 5137 df-cnv 5597 df-coss 36537 df-disjss 36814 df-disjs 36815 |
This theorem is referenced by: eldisjs2 36834 eldisjsdisj 36838 |
Copyright terms: Public domain | W3C validator |