Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjs Structured version   Visualization version   GIF version

Theorem eldisjs 36488
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.)
Assertion
Ref Expression
eldisjs (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))

Proof of Theorem eldisjs
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfdisjs 36474 . 2 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
2 cnveq 5726 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
32cosseqd 36206 . . 3 (𝑟 = 𝑅 → ≀ 𝑟 = ≀ 𝑅)
43eleq1d 2818 . 2 (𝑟 = 𝑅 → ( ≀ 𝑟 ∈ CnvRefRels ↔ ≀ 𝑅 ∈ CnvRefRels ))
51, 4rabeqel 36049 1 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1542  wcel 2114  ccnv 5534  ccoss 35988   Rels crels 35990   CnvRefRels ccnvrefrels 35996   Disjs cdisjs 36021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-rab 3063  df-v 3402  df-in 3860  df-ss 3870  df-br 5041  df-opab 5103  df-cnv 5543  df-coss 36192  df-disjss 36469  df-disjs 36470
This theorem is referenced by:  eldisjs2  36489  eldisjsdisj  36493
  Copyright terms: Public domain W3C validator