Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjs Structured version   Visualization version   GIF version

Theorem eldisjs 37234
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.)
Assertion
Ref Expression
eldisjs (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))

Proof of Theorem eldisjs
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfdisjs 37220 . 2 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
2 cnveq 5833 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
32cosseqd 36940 . . 3 (𝑟 = 𝑅 → ≀ 𝑟 = ≀ 𝑅)
43eleq1d 2819 . 2 (𝑟 = 𝑅 → ( ≀ 𝑟 ∈ CnvRefRels ↔ ≀ 𝑅 ∈ CnvRefRels ))
51, 4rabeqel 36764 1 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  ccnv 5636  ccoss 36684   Rels crels 36686   CnvRefRels ccnvrefrels 36692   Disjs cdisjs 36717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3449  df-in 3921  df-ss 3931  df-br 5110  df-opab 5172  df-cnv 5645  df-coss 36923  df-disjss 37215  df-disjs 37216
This theorem is referenced by:  eldisjs2  37235  eldisjsdisj  37239
  Copyright terms: Public domain W3C validator