Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjs Structured version   Visualization version   GIF version

Theorem eldisjs 38840
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.)
Assertion
Ref Expression
eldisjs (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))

Proof of Theorem eldisjs
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfdisjs 38826 . 2 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
2 cnveq 5817 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
32cosseqd 38550 . . 3 (𝑟 = 𝑅 → ≀ 𝑟 = ≀ 𝑅)
43eleq1d 2818 . 2 (𝑟 = 𝑅 → ( ≀ 𝑟 ∈ CnvRefRels ↔ ≀ 𝑅 ∈ CnvRefRels ))
51, 4rabeqel 38311 1 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  ccnv 5618  ccoss 38242   Rels crels 38244   CnvRefRels ccnvrefrels 38250   Disjs cdisjs 38275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-in 3905  df-ss 3915  df-br 5094  df-opab 5156  df-cnv 5627  df-coss 38533  df-disjss 38821  df-disjs 38822
This theorem is referenced by:  eldisjs2  38841  eldisjsdisj  38845
  Copyright terms: Public domain W3C validator