![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjs | Structured version Visualization version GIF version |
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.) |
Ref | Expression |
---|---|
eldisjs | ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjs 38664 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | |
2 | cnveq 5898 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
3 | 2 | cosseqd 38384 | . . 3 ⊢ (𝑟 = 𝑅 → ≀ ◡𝑟 = ≀ ◡𝑅) |
4 | 3 | eleq1d 2829 | . 2 ⊢ (𝑟 = 𝑅 → ( ≀ ◡𝑟 ∈ CnvRefRels ↔ ≀ ◡𝑅 ∈ CnvRefRels )) |
5 | 1, 4 | rabeqel 38210 | 1 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ◡ccnv 5699 ≀ ccoss 38135 Rels crels 38137 CnvRefRels ccnvrefrels 38143 Disjs cdisjs 38168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-br 5167 df-opab 5229 df-cnv 5708 df-coss 38367 df-disjss 38659 df-disjs 38660 |
This theorem is referenced by: eldisjs2 38679 eldisjsdisj 38683 |
Copyright terms: Public domain | W3C validator |