| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abeqin | Structured version Visualization version GIF version | ||
| Description: Intersection with class abstraction. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| Ref | Expression |
|---|---|
| abeqin.1 | ⊢ 𝐴 = (𝐵 ∩ 𝐶) |
| abeqin.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| abeqin | ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqin.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | ineq1i 4196 | . 2 ⊢ (𝐵 ∩ 𝐶) = ({𝑥 ∣ 𝜑} ∩ 𝐶) |
| 3 | abeqin.1 | . 2 ⊢ 𝐴 = (𝐵 ∩ 𝐶) | |
| 4 | dfrab2 4300 | . 2 ⊢ {𝑥 ∈ 𝐶 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐶) | |
| 5 | 2, 3, 4 | 3eqtr4i 2767 | 1 ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {cab 2712 {crab 3419 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-in 3938 |
| This theorem is referenced by: abeqinbi 38213 dfcnvrefrels3 38489 dffunsALTV 38643 dfdisjs 38668 |
| Copyright terms: Public domain | W3C validator |