Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abeqin Structured version   Visualization version   GIF version

Theorem abeqin 38234
Description: Intersection with class abstraction. (Contributed by Peter Mazsa, 21-Jul-2021.)
Hypotheses
Ref Expression
abeqin.1 𝐴 = (𝐵𝐶)
abeqin.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
abeqin 𝐴 = {𝑥𝐶𝜑}
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem abeqin
StepHypRef Expression
1 abeqin.2 . . 3 𝐵 = {𝑥𝜑}
21ineq1i 4224 . 2 (𝐵𝐶) = ({𝑥𝜑} ∩ 𝐶)
3 abeqin.1 . 2 𝐴 = (𝐵𝐶)
4 dfrab2 4326 . 2 {𝑥𝐶𝜑} = ({𝑥𝜑} ∩ 𝐶)
52, 3, 43eqtr4i 2773 1 𝐴 = {𝑥𝐶𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {cab 2712  {crab 3433  cin 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-in 3970
This theorem is referenced by:  abeqinbi  38235  dfcnvrefrels3  38511  dffunsALTV  38665  dfdisjs  38690
  Copyright terms: Public domain W3C validator