Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abeqin Structured version   Visualization version   GIF version

Theorem abeqin 34987
 Description: Intersection with class abstraction. (Contributed by Peter Mazsa, 21-Jul-2021.)
Hypotheses
Ref Expression
abeqin.1 𝐴 = (𝐵𝐶)
abeqin.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
abeqin 𝐴 = {𝑥𝐶𝜑}
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem abeqin
StepHypRef Expression
1 abeqin.2 . . 3 𝐵 = {𝑥𝜑}
21ineq1i 4066 . 2 (𝐵𝐶) = ({𝑥𝜑} ∩ 𝐶)
3 abeqin.1 . 2 𝐴 = (𝐵𝐶)
4 dfrab2 4160 . 2 {𝑥𝐶𝜑} = ({𝑥𝜑} ∩ 𝐶)
52, 3, 43eqtr4i 2806 1 𝐴 = {𝑥𝐶𝜑}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1507  {cab 2752  {crab 3086   ∩ cin 3822 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2744 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-rab 3091  df-v 3411  df-in 3830 This theorem is referenced by:  abeqinbi  34988  dfcnvrefrels3  35241  dffunsALTV  35390  dfdisjs  35415
 Copyright terms: Public domain W3C validator