![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abeqin | Structured version Visualization version GIF version |
Description: Intersection with class abstraction. (Contributed by Peter Mazsa, 21-Jul-2021.) |
Ref | Expression |
---|---|
abeqin.1 | ⊢ 𝐴 = (𝐵 ∩ 𝐶) |
abeqin.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
abeqin | ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqin.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
2 | 1 | ineq1i 4237 | . 2 ⊢ (𝐵 ∩ 𝐶) = ({𝑥 ∣ 𝜑} ∩ 𝐶) |
3 | abeqin.1 | . 2 ⊢ 𝐴 = (𝐵 ∩ 𝐶) | |
4 | dfrab2 4339 | . 2 ⊢ {𝑥 ∈ 𝐶 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐶) | |
5 | 2, 3, 4 | 3eqtr4i 2778 | 1 ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {cab 2717 {crab 3443 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 |
This theorem is referenced by: abeqinbi 38209 dfcnvrefrels3 38485 dffunsALTV 38639 dfdisjs 38664 |
Copyright terms: Public domain | W3C validator |