Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > abeqin | Structured version Visualization version GIF version |
Description: Intersection with class abstraction. (Contributed by Peter Mazsa, 21-Jul-2021.) |
Ref | Expression |
---|---|
abeqin.1 | ⊢ 𝐴 = (𝐵 ∩ 𝐶) |
abeqin.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
abeqin | ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqin.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
2 | 1 | ineq1i 4139 | . 2 ⊢ (𝐵 ∩ 𝐶) = ({𝑥 ∣ 𝜑} ∩ 𝐶) |
3 | abeqin.1 | . 2 ⊢ 𝐴 = (𝐵 ∩ 𝐶) | |
4 | dfrab2 4241 | . 2 ⊢ {𝑥 ∈ 𝐶 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐶) | |
5 | 2, 3, 4 | 3eqtr4i 2776 | 1 ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 {crab 3067 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 |
This theorem is referenced by: abeqinbi 36320 dfcnvrefrels3 36572 dffunsALTV 36721 dfdisjs 36746 |
Copyright terms: Public domain | W3C validator |