Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > abeqin | Structured version Visualization version GIF version |
Description: Intersection with class abstraction. (Contributed by Peter Mazsa, 21-Jul-2021.) |
Ref | Expression |
---|---|
abeqin.1 | ⊢ 𝐴 = (𝐵 ∩ 𝐶) |
abeqin.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
abeqin | ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqin.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
2 | 1 | ineq1i 4142 | . 2 ⊢ (𝐵 ∩ 𝐶) = ({𝑥 ∣ 𝜑} ∩ 𝐶) |
3 | abeqin.1 | . 2 ⊢ 𝐴 = (𝐵 ∩ 𝐶) | |
4 | dfrab2 4244 | . 2 ⊢ {𝑥 ∈ 𝐶 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐶) | |
5 | 2, 3, 4 | 3eqtr4i 2776 | 1 ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 {crab 3068 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 |
This theorem is referenced by: abeqinbi 36393 dfcnvrefrels3 36645 dffunsALTV 36794 dfdisjs 36819 |
Copyright terms: Public domain | W3C validator |