| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| dffunsALTV | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-funsALTV 38727 | . 2 ⊢ FunsALTV = ( Funss ∩ Rels ) | |
| 2 | df-funss 38726 | . 2 ⊢ Funss = {𝑓 ∣ ≀ 𝑓 ∈ CnvRefRels } | |
| 3 | 1, 2 | abeqin 38295 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {crab 3395 ≀ ccoss 38223 Rels crels 38225 CnvRefRels ccnvrefrels 38231 Funss cfunss 38252 FunsALTV cfunsALTV 38253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-funss 38726 df-funsALTV 38727 |
| This theorem is referenced by: dffunsALTV2 38730 dffunsALTV3 38731 dffunsALTV4 38732 elfunsALTV 38738 |
| Copyright terms: Public domain | W3C validator |