| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| dffunsALTV | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-funsALTV 38646 | . 2 ⊢ FunsALTV = ( Funss ∩ Rels ) | |
| 2 | df-funss 38645 | . 2 ⊢ Funss = {𝑓 ∣ ≀ 𝑓 ∈ CnvRefRels } | |
| 3 | 1, 2 | abeqin 38214 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3402 ≀ ccoss 38142 Rels crels 38144 CnvRefRels ccnvrefrels 38150 Funss cfunss 38171 FunsALTV cfunsALTV 38172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-funss 38645 df-funsALTV 38646 |
| This theorem is referenced by: dffunsALTV2 38649 dffunsALTV3 38650 dffunsALTV4 38651 elfunsALTV 38657 |
| Copyright terms: Public domain | W3C validator |