![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV | Structured version Visualization version GIF version |
Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.) |
Ref | Expression |
---|---|
dffunsALTV | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-funsALTV 38663 | . 2 ⊢ FunsALTV = ( Funss ∩ Rels ) | |
2 | df-funss 38662 | . 2 ⊢ Funss = {𝑓 ∣ ≀ 𝑓 ∈ CnvRefRels } | |
3 | 1, 2 | abeqin 38234 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 {crab 3433 ≀ ccoss 38162 Rels crels 38164 CnvRefRels ccnvrefrels 38170 Funss cfunss 38191 FunsALTV cfunsALTV 38192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 df-funss 38662 df-funsALTV 38663 |
This theorem is referenced by: dffunsALTV2 38666 dffunsALTV3 38667 dffunsALTV4 38668 elfunsALTV 38674 |
Copyright terms: Public domain | W3C validator |