Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunsALTV Structured version   Visualization version   GIF version

Theorem dffunsALTV 35447
 Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.)
Assertion
Ref Expression
dffunsALTV FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels }

Proof of Theorem dffunsALTV
StepHypRef Expression
1 df-funsALTV 35445 . 2 FunsALTV = ( Funss ∩ Rels )
2 df-funss 35444 . 2 Funss = {𝑓 ∣ ≀ 𝑓 ∈ CnvRefRels }
31, 2abeqin 35046 1 FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels }
 Colors of variables: wff setvar class Syntax hints:   = wceq 1522   ∈ wcel 2081  {crab 3109   ≀ ccoss 34985   Rels crels 34987   CnvRefRels ccnvrefrels 34993   Funss cfunss 35014   FunsALTV cfunsALTV 35015 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-rab 3114  df-v 3439  df-in 3866  df-funss 35444  df-funsALTV 35445 This theorem is referenced by:  dffunsALTV2  35448  dffunsALTV3  35449  dffunsALTV4  35450  elfunsALTV  35456
 Copyright terms: Public domain W3C validator