| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| dffunsALTV | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-funsALTV 38704 | . 2 ⊢ FunsALTV = ( Funss ∩ Rels ) | |
| 2 | df-funss 38703 | . 2 ⊢ Funss = {𝑓 ∣ ≀ 𝑓 ∈ CnvRefRels } | |
| 3 | 1, 2 | abeqin 38275 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3420 ≀ ccoss 38204 Rels crels 38206 CnvRefRels ccnvrefrels 38212 Funss cfunss 38233 FunsALTV cfunsALTV 38234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 df-funss 38703 df-funsALTV 38704 |
| This theorem is referenced by: dffunsALTV2 38707 dffunsALTV3 38708 dffunsALTV4 38709 elfunsALTV 38715 |
| Copyright terms: Public domain | W3C validator |