Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunsALTV Structured version   Visualization version   GIF version

Theorem dffunsALTV 38706
Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.)
Assertion
Ref Expression
dffunsALTV FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels }

Proof of Theorem dffunsALTV
StepHypRef Expression
1 df-funsALTV 38704 . 2 FunsALTV = ( Funss ∩ Rels )
2 df-funss 38703 . 2 Funss = {𝑓 ∣ ≀ 𝑓 ∈ CnvRefRels }
31, 2abeqin 38275 1 FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3420  ccoss 38204   Rels crels 38206   CnvRefRels ccnvrefrels 38212   Funss cfunss 38233   FunsALTV cfunsALTV 38234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-in 3938  df-funss 38703  df-funsALTV 38704
This theorem is referenced by:  dffunsALTV2  38707  dffunsALTV3  38708  dffunsALTV4  38709  elfunsALTV  38715
  Copyright terms: Public domain W3C validator