Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV | Structured version Visualization version GIF version |
Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.) |
Ref | Expression |
---|---|
dffunsALTV | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-funsALTV 36719 | . 2 ⊢ FunsALTV = ( Funss ∩ Rels ) | |
2 | df-funss 36718 | . 2 ⊢ Funss = {𝑓 ∣ ≀ 𝑓 ∈ CnvRefRels } | |
3 | 1, 2 | abeqin 36319 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {crab 3067 ≀ ccoss 36260 Rels crels 36262 CnvRefRels ccnvrefrels 36268 Funss cfunss 36289 FunsALTV cfunsALTV 36290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-funss 36718 df-funsALTV 36719 |
This theorem is referenced by: dffunsALTV2 36722 dffunsALTV3 36723 dffunsALTV4 36724 elfunsALTV 36730 |
Copyright terms: Public domain | W3C validator |