Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunsALTV Structured version   Visualization version   GIF version

Theorem dffunsALTV 38639
Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.)
Assertion
Ref Expression
dffunsALTV FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels }

Proof of Theorem dffunsALTV
StepHypRef Expression
1 df-funsALTV 38637 . 2 FunsALTV = ( Funss ∩ Rels )
2 df-funss 38636 . 2 Funss = {𝑓 ∣ ≀ 𝑓 ∈ CnvRefRels }
31, 2abeqin 38208 1 FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  {crab 3443  ccoss 38135   Rels crels 38137   CnvRefRels ccnvrefrels 38143   Funss cfunss 38164   FunsALTV cfunsALTV 38165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-funss 38636  df-funsALTV 38637
This theorem is referenced by:  dffunsALTV2  38640  dffunsALTV3  38641  dffunsALTV4  38642  elfunsALTV  38648
  Copyright terms: Public domain W3C validator